Skip to main content
Log in

Towards laser spectroscopy of the proton-halo candidate boron-8

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We propose to determine the nuclear charge radius of 8B by high-resolution laser spectroscopy. 8B (t 1/2 = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or “one-proton-halo” in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes 8B, 10B and 11B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of 8B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanihata, I., et al.: Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region. Phys. Rev. Lett. 55, 2676–2679 (1985)

    Article  ADS  Google Scholar 

  2. Lu, Z.T., et al.: Laser probing of neutron-rich nuclei in light atoms. Rev. Mod. Phys. 85, 1383–1400 (2013)

    Article  ADS  Google Scholar 

  3. Wang, L.B., et al.: Laser Spectroscopic Determination of the 6He Nuclear Charge Radius. Phys. Rev. Lett. 93, 142501 (2004)

    Article  ADS  Google Scholar 

  4. Müller, P., et al.: Nuclear Charge Radius of 8He. Phys. Rev. Lett. 99, 252501 (2007)

    Article  Google Scholar 

  5. Ewald, G., et al.: Nuclear Charge Radii of Li-8, Li-9 Determined by Laser Spectroscopy. Phys. Rev. Lett. 93, 113002 (2004)

    Article  ADS  Google Scholar 

  6. Sánchez, R., et al.: Nuclear Charge Radii of 9,11Li: The Influence of Halo Neutrons. Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  7. Nörtershäuser, W., et al.: Nuclear Charge Radii of 7,9,10Be and the One-Neutron Halo Nucleus 11Be. Phys. Rev. Lett. 102, 062503 (2009)

    Article  Google Scholar 

  8. Krieger, A., et al.: Nuclear Charge Radius of 12Be. Phys. Rev. Lett. 108, 142501 (2012)

    Article  ADS  Google Scholar 

  9. Krieger, A., et al.: Frequency-comb referenced collinear laser spectroscopy of Be + for nuclear structure investigations and many-body QED tests. Appl. Phys. B 123, 15 (2017)

    Article  ADS  Google Scholar 

  10. Geithner, W., et al.: Masses and Charge Radii of 17−22Ne and the Two-Proton-Halo Candidate 17Ne. Phys. Rev. Lett. 101, 252502 (2008)

    Article  ADS  Google Scholar 

  11. Sumikama, T., et al.: Electric quadrupole moment of the proton halo nucleus 8B. Phys. Rev. C 74, 024327 (2006)

    Article  ADS  Google Scholar 

  12. Pieper, S.C., et al.: Quantum Monte Carlo Calculations of Light Nuclei. Annu. Rev. Nucl. Part. Sci. (2001)

  13. Navrátil, P., et al.: Recent developments in no-core shell-model calculations. J. Phys. G 36(8), 083101 (2009)

    Article  ADS  Google Scholar 

  14. Neff, T., et al.: Clustering and other exotic phenomena in nuclei. Eur. Phys. J Spec. Top. 156(1), 69–92 (2008)

    Article  Google Scholar 

  15. Ryberg, E., et al.: Effective field theory for proton halo nuclei. Phys. Rev. C 89, 014325 (2014)

    Article  ADS  Google Scholar 

  16. Kramida, A.E., et al.: A critical compilation of energy levels and spectral lines of neutral boron. Phys. Scr. 76(5), 544 (2007)

    Article  ADS  Google Scholar 

  17. Ryberg, E., et al.: Constraining low-energy proton capture on beryllium-7 through charge radius measurements. Eur. Phys. J. A 50, 170 (2014)

    Article  ADS  Google Scholar 

  18. Yan, Z.C., et al.: Lithium isotope shifts as a measure of nuclear size. Phys. Rev. A 61, 022504 (2000)

    Article  ADS  Google Scholar 

  19. Puchalski, M., et al.: Isotope shift in a beryllium atom. Phys. Rev. A 89, 012506 (2014)

    Article  ADS  Google Scholar 

  20. Puchalski, M., et al.: Explicitly correlated wave function for a boron atom. Phys. Rev. A 92, 062501 (2015)

    Article  ADS  Google Scholar 

  21. Schaller, L., et al.: Nuclear charge radii from muonic X-ray transitions in beryllium, boron, carbon and nitrogen. Nucl. Phys. A 343, 333–346 (1980)

    Article  ADS  Google Scholar 

  22. Sternberg, M., et al.: Limit on Tensor Currents from 8Li β Decay. Phys. Rev. Lett. 115, 182501 (2015)

    Article  ADS  Google Scholar 

  23. Galvȧn, A.P., et al.: Status Update on the β-nu Correlation Measurement in the β Decay of 8B. JPS Conf. Proc. 6, 030071 (2015)

    Google Scholar 

  24. Li, G., et al.: Tensor Interaction Limit Derived from the α- β-\(\overline {\nu }\) Correlation in Trapped 8Li Ions. Phys. Rev. Lett. 110, 092502 (2013)

    Article  ADS  Google Scholar 

  25. Gorges, C., et al.: Isotope shift of 40,42,44,48Ca in the 4s \({~}^2\textit {S}_{1/2}\rightarrow \) 4p 2 P 3/2 transition. J. Phys. B 48, 245008 (2015)

    Article  ADS  Google Scholar 

  26. Ketelaer, J., et al.: TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instr. Meth. Phys. Res. A 594(2), 162–177 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Maaß.

Additional information

This article is part of the Topical Collection on Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016

Edited by Krassimira Marinova, Magdalena Kowalska and Zdzislaw Błaszczak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maaß, B., Müller, P., Nörtershäuser, W. et al. Towards laser spectroscopy of the proton-halo candidate boron-8. Hyperfine Interact 238, 25 (2017). https://doi.org/10.1007/s10751-017-1399-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-017-1399-5

Keywords

Navigation