Skip to main content
Log in

Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Collinear laser spectroscopy is a powerful tool for studying the nuclear spins, electromagnetic moments, and charge radii of exotic nuclei. To study the nuclear properties of unstable nuclei at the Beijing Radioactive Ion-beam Facility (BRIF) and the future High Intensity Heavy-ion Accelerator Facility (HIAF), we developed a collinear laser spectroscopy apparatus integrated with an offline laser ablation ion source and a laser system. The overall performance of this state-of-the-art technique was evaluated, and the system was commissioned using a bunched stable ion beam. The high-resolution optical spectra for the 4s \(^{2}S_{1/2}\) \(\rightarrow\) 4p \(^{2}P_{3/2}\) (D2) ionic transition of \(^{40,42,44,48}\)Ca isotopes were successfully measured. The extracted isotope shifts relative to \(^{40}\)Ca showed excellent agreement with the literature values. This system is now ready for use at radioactive ion beam facilities such as the BRIF and paves the way for the further development of higher-sensitivity collinear resonance ionization spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Otsuka, A. Gade, O. Sorlin et al., Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020). https://doi.org/10.1103/RevModPhys.92.015002

    Article  ADS  Google Scholar 

  2. F. Nowacki, A. Obertelli, A. Poves, The neutron-rich edge of the nuclear landscape: experiment and theory. Prog. Part. Nucl. Phys. 120, 103866 (2021). https://doi.org/10.1016/j.ppnp.2021.103866

    Article  Google Scholar 

  3. W. Nörtershäuser, D. Tiedemann, M. Žáková et al., Nuclear charge radii of \(^{7,9,10}\text{ Be }\) and the one-neutron Halo nucleus \(^{11}\text{ Be }\). Phys. Rev. Lett. 102, 062503 (2009). https://doi.org/10.1103/PhysRevLett.102.062503

    Article  ADS  Google Scholar 

  4. K.T. Flanagan, P. Vingerhoets, M. Avgoulea et al., Nuclear spins and magnetic moments of \(^{71,73,75}\text{ Cu }\): inversion of \(\pi \text{2p }_{3/2}\) and \(\pi \text{2f }_{5/2}\) Levels in \(^{75}\text{ Cu }\). Phys. Rev. Lett. 103, 142501 (2009). https://doi.org/10.1103/PhysRevLett.103.142501

  5. X. F. Yang, C. Wraith, L. Xie et al., Isomer Shift and Magnetic Moment of the Long-Lived \(1/{2}^{+}\) Isomer in \(_{30}^{79}{\text{ Zn }}_{49}\): Signature of Shape Coexistence near \(^{78}\text{ Ni }\). Phys. Rev. Lett. 116, 182502 (2016). https://doi.org/10.1103/PhysRevLett.116.182502

  6. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum et al., Unexpectedly large charge radii of neutron-rich calcium isotopes. Nat. Phys. 12, 594–598 (2016). https://doi.org/10.1038/nphys3645

  7. A. Koszorús, X.F. Yang, W.G. Jiang et al., Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of \({N}\) = 32. Nat. Phys. 17, 439 (2021). https://doi.org/10.1038/s41567-020-01136-5

    Article  Google Scholar 

  8. B. Cheal, K. T. Flanagan, Progress in laser spectroscopy at radioactive ion beam facilities. J. Phys. G Nuclear Particle Phys. 37, 113101 (2010). https://doi.org/10.1088/0954-3899/37/11/113101

  9. P. Campbell, I.D. Moore, M.R. Pearson, Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016). https://doi.org/10.1016/j.ppnp.2015.09.003

    Article  ADS  Google Scholar 

  10. E. Mané, J. Billowes, K. Blaum et al., An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE. Eur. Phys. J. A 42, 503 (2009). https://doi.org/10.1140/epja/i2009-10828-0

    Article  ADS  Google Scholar 

  11. T.E. Cocolios, R.P. de Groote, J. Billowes et al., High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE. Nucl. Instrum. Methods Phys. Res. Sect. B 376, 284–287 (2016). https://doi.org/10.1016/j.nimb.2015.11.024

    Article  ADS  Google Scholar 

  12. R. Neugart, J. Billowes, M. L. Bissell et al., Collinear laser spectroscopy at ISOLDE: new methods and highlights. J. Phys. G Nuclear Particle Phys. 44, 064002 (2017). https://doi.org/10.1088/1361-6471/aa6642

  13. R. P. de Groote, A. de Roubin, P. Campbell et al., Upgrades to the collinear laser spectroscopy experiment at the IGISOL. Nucl. Instrum. Methods Phys. Res. B 463, 437–440 (2020). https://doi.org/10.1016/j.nimb.2019.04.028

  14. A. Voss, T. J. Procter, O. Shelbaya et al., The Collinear Fast Beam laser Spectroscopy (CFBS) experiment at Triumf. Nucl. Instrum. Methods Phys. Res. Sect. A 811, 57 (2016). https://doi.org/10.1016/j.nima.2015.11.145

  15. K. Minamisono, P. F. Mantica, A. Klose et al., Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL. Nucl. Instr. Methods Phys. Res. Sect. A. 709, 85 (2013). https://doi.org/10.1016/j.nima.2013.01.038

  16. D.T. Yordanov, D. Atanasov, M.L. Bissell et al., Instrumentation for high-resolution laser spectroscopy at the ALTO radioactive-beam facility. J. Instrum. 15, P06004 (2020). https://doi.org/10.1088/1748-0221/15/06/p06004

    Article  Google Scholar 

  17. M. Reponen, R. P. de Groote1, L. Al Ayoubi et al., Evidence of a sudden increase in the nuclear size of proton-rich silver-96. Nature Commun. 12, 4596 (2021). https://doi.org/10.1038/s41467-021-24888-x

  18. Annika Voss, Matthew R. Pearson, Jonathan Billowes et al., First use of high-frequency intensity modulation of narrow-linewidth laser light and its application in determination of \(^{206,205,204}\text{Fr}\) ground-state properties. Phys. Rev. Lett. 111, 122501 (2013). https://doi.org/10.1103/PhysRevLett.111.122501

    Article  ADS  Google Scholar 

  19. A.J. Miller, K. Minamisono, A. Klose et al., Proton superfluidity and charge radii in proton-rich calcium isotopes. Nat. Phys. 15, 432–436 (2019). https://doi.org/10.1038/s41567-019-0416-9

    Article  Google Scholar 

  20. Hong-Ming. Xie, Gu. Ke-Wei, Yuan Wei et al., A noninvasive Ionization Profile Monitor for transverse beam cooling and orbit oscillation study in HIRFL-CSR. Nucl. Sci. Tech. 31, 40 (2020). https://doi.org/10.1007/s41365-020-0743-7

    Article  Google Scholar 

  21. Y. Liu, Y.L. Ye, J.L. Lou et al., Positive-parity linear-chain molecular band in \(^{16}\text{C}\). Phys. Rev. Lett. 124, 192501 (2020). https://doi.org/10.1103/PhysRevLett.124.192501

    Article  ADS  Google Scholar 

  22. Y.B. Wang, J. Su, Z.Y. Han et al., Direct observation of the exotic \(\beta -\gamma -\alpha\) decay mode in the \({T}_{z}=-1\) nucleus \(^{20}\text{ Na }\). Phys. Rev. C 103, L011301 (2021). https://doi.org/10.1103/PhysRevC.103.L011301

    Article  ADS  Google Scholar 

  23. W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of \(^{23}\text{ Na }\) + \(^{40}\text{ Ca }\) elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9

    Article  Google Scholar 

  24. Z.Y. Zhang, H.B. Yang, M.H. Huang et al., New \(\alpha\)-Emitting Isotope \(^{214}\text{ U }\) and abnormal enhancement of \(\alpha\)-particle clustering in lightest uranium isotopes. Phys. Rev. Lett. 126, 152502 (2021). https://doi.org/10.1103/PhysRevLett.126.152502

    Article  ADS  Google Scholar 

  25. Y. Liu, Y.L. Ye, Nuclear clustering in light neutron-rich nuclei. Nucl. Sci. Tech. 29, 184 (2018). https://doi.org/10.1007/s41365-018-0522-x

    Article  Google Scholar 

  26. X. Zhou, M. Wang, Y.H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of \(^{23}\text{Co}\). Nucl. Sci. Tech. 32, 37 (2021). https://doi.org/10.1007/s41365-021-00876-0

    Article  Google Scholar 

  27. Y. Yang, L.T. Sun, Y.H. Zhai et al., Heavy ion accelerator facility front end design and commissioning. Phys. Rev. Accel. Beams 22, 110101 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.110101

    Article  ADS  Google Scholar 

  28. M.T. Tang, L.J. Mao, H.-J. Lu et al., Design of an efficient collector for the HIAF electron cooling system. Nucl. Sci. Tech. 32, 116 (2021). https://doi.org/10.1007/s41365-021-00949-0

    Article  Google Scholar 

  29. P.Y. Yu, B. Zhang, F.F. Wang et al., Fabrication and cold test of prototype of spatially periodic radio frequency quadrupole focusing linac. Nucl. Sci. Tech. 32, 8 (2021). https://doi.org/10.1007/s41365-020-00835-1

    Article  Google Scholar 

  30. Y.L. Ye, X.F. Yang, Y. Liu et al., Radioactive ion beam physics related to HIAF (in Chinese). Sci. Sin-Phys. Mech. Astron. 50, 112003 (2020). https://doi.org/10.1360/SSPMA-2020-0282

    Article  Google Scholar 

  31. Y. L. Ye., Proposed BISOL Facility - a Conceptual Design. EPJ Web Conf. 178, 01005 (2018). https://doi.org/10.1051/epjconf/201817801005

  32. K. König, J. Krämer, C. Geppert et al., A new collinear apparatus for laser spectroscopy and applied science (COALA). Rev. Sci. Instrum. 91, 081301 (2020). https://doi.org/10.1063/5.0010903

    Article  ADS  Google Scholar 

  33. C Gorges, K Blaum, N Frömmgen et al., Isotope shift of \(^{40,42,44,48}\)Ca in the 4s \(^2S_{1/2}\)\(\rightarrow\) 4p \(^2P_{3/2}\) transition. J. Phys. B Atom. Mol. Opt. Phys. 48, 245008 (2015). https://doi.org/10.1088/0953-4075/48/24/245008

  34. Patrick Müller, Kristian König, Phillip Imgram et al., Collinear laser spectroscopy of \({\text{ Ca }}^{+}\): solving the field-shift puzzle of the \(4s^{2}\text{ S}_{1/2}\rightarrow 4p^{2}\text{ P}_{1/2,3/2}\) transitions. Phys. Rev. Res. 2, 043351 (2020). https://doi.org/10.1103/PhysRevResearch.2.043351

    Article  Google Scholar 

  35. R. F. Garcia Ruiz, A. R. Vernon, C. L. Binnersley et al., High-precision multiphoton ionization of accelerated laser-ablated species. Phys. Rev. X 8, 041005 (2018). https://doi.org/10.1103/PhysRevX.8.041005

  36. F.P. Gustafsson, C.M. Ricketts, M.L. Reitsma et al., Tin resonance-ionization schemes for atomic- and nuclear-structure studies. Phys. Rev. A 102, 052812 (2020). https://doi.org/10.1103/PhysRevA.102.052812

    Article  ADS  Google Scholar 

  37. A.R. Vernona, R.P. de Groote, J. Billowes et al., Optimising the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 384–389 (2020). https://doi.org/10.1016/j.nimb.2019.04.049

    Article  ADS  Google Scholar 

  38. K. Kreim, M.L. Bissell, J. Papuga et al., Nuclear charge radii of potassium isotopes beyond N = 28. Phys. Lett. B 731, 97 (2014). https://doi.org/10.1016/j.physletb.2014.02.012

    Article  ADS  Google Scholar 

  39. Wouter Gins, Development of a dedicated laser-polarization beamline for ISOLDE-CERN. PhD thesis, KU Leuven 2019

  40. S. W. Bai, Á. Koszorús, B. S. Hu, X. F. Yang, et al., Electromagnetic moments of scandium isotopes and \({N}=28\) isotones in the distinctive \(0f_{7/2}\) orbit, submitted (2021)

  41. Á. Koszorús, X.F. Yang, J. Billowes et al., Precision measurements of the charge radii of potassium isotopes. Phys. Rev. C 100, 034304 (2019). https://doi.org/10.1103/PhysRevC.100.034304

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experiment was carried out by Shi-Wei Bai, Xiao-Fei Yang, Shu-Jing Wang, Yong-Chao Liu, Peng Zhang, Yin-Shen Liu, Han-Rui Hu, Yang-Fan Guo, Jin Wang, Ze-Yu Du, Zhou Yan, Yun-kai Zhang, Yan-Lin Ye and Qi-Te Li. Data analysis was performed by Shi-Wei Bai, Xiao-fei Yang, Shu-Jing Wang, Yong-Chao Liu. The first draft of the manuscript was written by Shi-Wei Bai and Xiao-Fei Yang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Fei Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12027809, U1967201, 11875073, 11875074 and 11961141003), National Key R&D Program of China (No. 2018YFA0404403), China National Nuclear Corporation (No. FA18000201), and the State Key Laboratory of Nuclear Physics and Technology, Peking University (No. NPT2019ZZ02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, SW., Yang, XF., Wang, SJ. et al. Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source. NUCL SCI TECH 33, 9 (2022). https://doi.org/10.1007/s41365-022-00992-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-00992-5

Keywords

Navigation