Skip to main content
Log in

Winter severity shapes spring plankton succession in a small, eutrophic lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Springtime in temperate lakes is characterized by a phytoplankton bloom, followed by a grazing crustacean zooplankton bloom. Timing and species composition for both phytoplankton and zooplankton peaks are likely dependent on antecedent conditions and may respond to climate change. Here, we tracked winter–spring plankton phenology for four years in a shallow, eutrophic lake. Winter conditions influenced successional events and species composition for both phytoplankton and zooplankton. Specifically, diatoms dominated around ice-out followed by cyanobacteria blooms in the late spring. Cyclopoid copepods were common under ice, whereas Daphnia increased with higher water temperature later in the season. Phytoplankton and zooplankton species composition responded to water temperature, ice-off, and exhibited inter-annual variation, while phytoplankton also responded to nutrient concentrations and biomass of some zooplankton groups. Zooplankton species composition also corresponded with secchi depth. Interestingly, the ice broke up and re-froze during the warmest winter studied, which allowed water column mixing and caused colder water temperatures than water temperatures under ice. In this particular study year, the spring Daphnia bloom was late relative to other years, indicating a possible mismatch between the phytoplankton and zooplankton blooms. Our study indicates that winter conditions have a strong impact on plankton phenology and community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Thermistor chain data are published at http://doi.org/10.5281/zenodo.4019639. All other data are available from the corresponding author upon reasonable request.

Code availability

R code is available from the corresponding author upon reasonable request.

References

  • Adrian, R., N. Walz, T. Hintze, S. Hoeg & R. Rusche, 1999. Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwater Biology 41: 621–634.

    Article  Google Scholar 

  • Agasild, H. & T. Nõges, 2005. Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. Journal of Plankton Research 27: 1155–1174.

    Article  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Berger, S. A., S. Diehl, H. Stibor, G. Trommer, M. Ruhenstroth, A. Wild, A. Weigert, C. G. Jäger & M. Striebel, 2007. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150: 643–654.

    Article  PubMed  Google Scholar 

  • Bertilsson, S., A. Burgin, C. C. Carey, S. B. Fey, H.-P. Grossart, L. M. Grubisic, I. D. Jones, G. Kirillin, J. T. Lennon, A. Shade & R. L. Smyth, 2013. The under-ice microbiome of seasonally frozen lakes. Limnology and Oceanography 58: 1998–2012.

    Article  Google Scholar 

  • Bižić-Ionescu, M., R. Amann & H.-P. Grossart, 2014. Massive Regime Shifts and High Activity of Heterotrophic Bacteria in an Ice-Covered Lake. PLoS ONE 9: e113611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Block, B. D., B. A. Denfeld, J. D. Stockwell, G. Flaim, H. F. Grossart, L. B. Knoll, D. B. Maier, R. L. North, M. Rautio, J. A. Rusak, S. Sadro, G. A. Weyhenmeyer, A. J. Bramburger, D. K. Branstrator, K. Salonen & S. E. Hampton, 2019. The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods 17: 42–57.

    Google Scholar 

  • Bolsenga, S. J., & H. A. Vanderploeg, 1992. Estimating photosynthetically available radiation into open and ice-covered freshwater lakes from surface characteristics; a high transmittance case study. Hydrobiologia 243–244: 95–104.

  • Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475–489.

    Article  Google Scholar 

  • Cáceres, C. E. & M. S. Schwalbach, 2001. How well do laboratory experiments explain field patterns of zooplankton emergence? Freshwater Biology 46: 1179–1189.

    Article  Google Scholar 

  • Chisholm, S. W., 1992. Phytoplankton Size. Primary Productivity and Biogeochemical Cycles in the Sea, Plenum Press, New York.

  • Chu, K., Y. She, J. Kemp, M. Loewen & E. Davies, 2017. Interrelationship between nutrients and chlorophyll-a in an urban stormwater lake during the ice-covered period. Journal of Contemporary Urban Affairs 1: 24–30.

    Article  Google Scholar 

  • DeYoe, H. R., 1981. Seasonal succession of the algae in Shelburne Pond, University of Vermont.

    Google Scholar 

  • Dokulil, M. T. & A. Herzig, 2009. An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquatic Ecology 43: 715–725.

    Article  CAS  Google Scholar 

  • Durant, J., D. Hjermann, G. Ottersen & N. Stenseth, 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.

    Article  Google Scholar 

  • Elliott, J. A., I. D. Jones & S. J. Thackeray, 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load in a temperate lake. Hydrobiologia 559: 401–411.

    Article  CAS  Google Scholar 

  • Ferber, L. R., S. N. Levine, A. Lini & G. P. Livingston, 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology 49: 690–708.

    Article  CAS  Google Scholar 

  • Feuchtmayr, H., S. J. Thackeray, I. D. Jones, M. De Ville, J. Fletcher, B. James, & J. Kelly, 2012. Spring phytoplankton phenology - are patterns and drivers of change consistent among lakes in the same climatological region? Freshwater Biology 57: 331–344.

  • Flöder, S., J. Urabe & Z. Zichiro Kawabata, 2002. The influence of fluctuating light intensities on species composition and diversity of natural phytoplankton communities. Oecologia 133: 395–401.

    Article  PubMed  Google Scholar 

  • Grolemund, G., & H. Wickham, 2015. Dates and Times Made Easy with lubridate. Journal of Statistical Software 40.

  • Grosbois, G., H. Mariash, T. Schneider & M. Rautio, 2017. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Scientific Reports 7: 11543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grosbois, G. & M. Rautio, 2018. Active and colorful life under lake ice. Ecology 99: 752–754.

    Article  PubMed  Google Scholar 

  • Hall, D. J., 1964. An experimental approach to the dynamics of a natural population of Daphnia Galeata Mendotae. Ecology 45: 94.

    Article  Google Scholar 

  • Hampton, S. E., A. W. E. Galloway, S. M. Powers, T. Ozersky, K. H. Woo, R. D. Batt, S. G. Labou, C. M. O’Reilly, S. Sharma, N. R. Lottig, E. H. Stanley, R. L. North, J. D. Stockwell, R. Adrian, G. A. Weyhenmeyer, L. Arvola, H. M. Baulch, I. Bertani, L. L. Bowman, C. C. Carey, J. Catalan, W. Colom-Montero, L. M. Domine, M. Felip, I. Granados, C. Gries, H.-P. Grossart, J. Haberman, M. Haldna, B. Hayden, S. N. Higgins, J. C. Jolley, K. K. Kahilainen, E. Kaup, M. J. Kehoe, S. MacIntyre, A. W. Mackay, H. L. Mariash, R. M. McKay, B. Nixdorf, P. Nõges, T. Nõges, M. Palmer, D. C. Pierson, D. M. Post, M. J. Pruett, M. Rautio, J. S. Read, S. L. Roberts, J. Rücker, S. Sadro, E. A. Silow, D. E. Smith, R. W. Sterner, G. E. A. Swann, M. A. Timofeyev, M. Toro, M. R. Twiss, R. J. Vogt, S. B. Watson, E. J. Whiteford & M. A. Xenopoulos, 2017. Ecology under lake ice. Ecology Letters 20: 98–111.

    Article  Google Scholar 

  • Hamrová, E., J. Mergeay & A. Petrusek, 2011. Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy. BMC Evolutionary Biology 11: 1–10.

    Article  Google Scholar 

  • Heathcote, A., C. Filstrup, D. Kendall, & J. Downing, 2016. Biomass pyramids in lake plankton: influence of Cyanobacteria size and abundance. Inland Waters 6: 50–257.

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume Calculation for Pelagic and Benthic Microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hrycik, A. R., & J. D. Stockwell, 2021. Under-ice mesocosms reveal the primacy of light but the importance of zooplankton in winter phytoplankton dynamics. Limnology and Oceanography 66: 481–495.

  • Ikeda, T., 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Marine Biology 85: 1–11.

    Article  Google Scholar 

  • Jansen, J., S. MacIntyre, D. Barrett, Y.-P. Chin, A. Cortés, A. Forrest, A. R. Hrycik, R. Martin, B. McMeans, M. Rautio & R. Schwefel, 2021. Winter limnology: how do hydrodynamics and biogeochemistry shape ecosystems under ice? JGR Biogeosciences 126: e2020JG006237.

    Article  CAS  Google Scholar 

  • Joung, D., M. Leduc, B. Ramcharitar, Y. Xu, P. D. F. Isles, J. D. Stockwell, G. K. Druschel, T. Manley & A. W. Schroth, 2017. Winter weather and lake-watershed physical configuration drive phosphorus, iron, and manganese dynamics in water and sediment of ice-covered lakes. Limnology and Oceanography 62: 1620–1635.

    Article  Google Scholar 

  • Katz, S. L., L. R. Izmest’eva, S. E. Hampton, T. Ozersky, K. Shchapov, M. V. Moore, S. V. Shimaraeva & E. A. Silow, 2015. The “Melosira years” of Lake Baikal: Winter environmental conditions at ice onset predict under-ice algal blooms in spring. Limnology and Oceanography 60: 1950–1964.

    Article  Google Scholar 

  • Kirillin, G., M. Leppäranta, A. Terzhevik, N. Granin, J. Bernhardt, C. Engelhardt, T. Efremova, S. Golosov, N. Palshin, P. Sherstyankin, G. Zdorovennova & R. Zdorovennov, 2012. Physics of seasonally ice-covered lakes: a review. Aquatic Sciences 74: 659–682.

    Article  Google Scholar 

  • Lewandowska, A. M., M. Striebel, U. Feudel, H. Hillebrand & U. Sommer, 2015. The importance of phytoplankton trait variability in spring bloom formation. ICES Journal of Marine Science 72: 1908–1915.

    Article  Google Scholar 

  • Lewandowska, A. & U. Sommer, 2010. Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology Progress Series 405: 101–111.

    Article  CAS  Google Scholar 

  • Lignell, R., A.-S. Heiskanen, H. Kuosa, K. Gundersen, P. Kuuppo-Leinikki, R. Pajuniemi, & A. Uitto, 1993. Fate of a phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic. Marine Ecology Progress Series 94: 239–252.

  • Magee, M. R. & C. H. Wu, 2017. Effects of changing climate on ice cover in three morphometrically different lakes. Hydrological Processes 31: 308–323.

    Article  Google Scholar 

  • Magnuson, J. J., 2000. Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science 289: 1743–1746.

  • Mariash, H. L., M. Cusson & M. Rautio, 2017. Fall composition of storage lipids is associated with the overwintering strategy of Daphnia. Lipids 52: 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Meis, S., S. J. Thackeray & I. D. Jones, 2009. Effects of recent climate change on phytoplankton phenology in a temperate lake. Freshwater Biology 54: 1888–1898.

    Article  CAS  Google Scholar 

  • Moody, E. K. & G. M. Wilkinson, 2019. Functional shifts in lake zooplankton communities with hypereutrophication. Freshwater Biology 64: 608–616.

    Article  CAS  Google Scholar 

  • Najafi, M. R., F. Zwiers & N. Gillett, 2017. Attribution of the observed spring snowpack decline in British Columbia to anthropogenic climate change. Journal of Climate 30: 4113–4130.

    Google Scholar 

  • Obertegger, U., H. A. Smith, G. Flaim, & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2019. Vegan: Community Ecology Package. https://cran.r-project.org/web/packages/vegan/vegan.pdf.

  • Özkundakci, D., A. S. Gsell, T. Hintze, H. Täuscher & R. Adrian, 2016. Winter severity determines functional-trait composition of phytoplankton in seasonally ice-covered lakes. Global Change Biology 22: 284–298.

    Article  PubMed  Google Scholar 

  • Peeters, F., D. Straile, A. Lorke & D. M. Livingstone, 2007. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Global Change Biology 13: 1898–1909.

    Article  Google Scholar 

  • Phillips, K. A. & M. W. Fawley, 2002. Winter phytoplankton community structure in three shallow temperate lakes during ice cover. Hydrobiologia 470: 97–113.

    Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Article  Google Scholar 

  • Powers, S. M., H. M. Baulch, S. E. Hampton, S. G. Labou, N. R. Lottig & E. H. Stanley, 2017. Nitrification contributes to winter oxygen depletion in seasonally frozen forested lakes. Biogeochemistry 136: 119–129.

    Article  CAS  Google Scholar 

  • Primicerio, R. & A. Klemetsen, 1999. Zooplankton seasonal dynamics in the neighbouring lakes Takvatn and Lombola (Northern Norway). Hydrobiologia 411: 19–29.

    Article  Google Scholar 

  • Quayle, W. C., P. Convey, L. S. Peck, C. J. Ellis-Evans, H. G. Butler, & H. J. Peat, 2013. Ecological Responses of Maritime Antarctic Lakes to Regional Climate Change. Antarctic Research Series: 159–170

  • R Development Core Team, R., 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing, http://www.r-project.org.

  • Reynolds, C. S., 1998. Phytoplankton and Trophic Gradients. Hydrobiologia 369/370: 11–26.

    Article  CAS  Google Scholar 

  • Sadro, S., J. O. Sickman, J. M. Melack & K. Skeen, 2018. Effects of Climate Variability on Snowmelt and Implications for Organic Matter in a High-Elevation Lake. Water Resources Research 54: 4563–4578.

    Article  CAS  Google Scholar 

  • Salmi, P. & K. Salonen, 2016. Regular build-up of the spring phytoplankton maximum before ice-break in a boreal lake. Limnology and Oceanography 61: 240–253.

    Article  Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnology and Oceanography 34: 673–687.

    Article  Google Scholar 

  • Sharma, S., K. Blagrave, J. J. Magnuson, C. M. O’Reilly, S. Oliver, R. D. Batt, M. R. Magee, D. Straile, G. A. Weyhenmeyer, L. Winslow & R. I. Woolway, 2019. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change 9: 227–231.

    Article  Google Scholar 

  • Shatwell, T., J. Köhler & A. Nicklisch, 2008. Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Global Change Biology 14: 2194–2200.

    Article  Google Scholar 

  • Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. PEG-model of Seasonal Succession of Planktonic Events in Fresh Waters. Archiv Fur Hydrobiologie 106: 433–471.

    Google Scholar 

  • Stewart, I. T., 2009. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrological Processes 23: 78–94.

  • Striebel, M., S. Schabhüttl, D. Hodapp, P. Hingsamer & H. Hillebrand, 2016. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition. Oecologia 182: 815–827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stross, R. G., 1966. Light and Temperature Requirements for Diapause Development and Release in Daphnia. Ecology 47: 368–374.

    Article  Google Scholar 

  • Svensson, J. E. & J. A. E. Stenson, 1991. Herbivoran impact on phytoplankton community structure. Hydrobiologia 226: 71–80.

    Google Scholar 

  • Talling, J. F., 2003. Phytoplankton-zooplankton seasonal timing and the ‘clear-water phase’ in some English lakes. Freshwater Biology 48: 39–52.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.

    Article  Google Scholar 

  • Thackeray, S. J., P. A. Henrys, I. D. Jones & H. Feuchtmayr, 2012. Eight decades of phenological change for a freshwater cladoceran: what are the consequences of our definition of seasonal timing? Freshwater Biology 57: 345–359.

    Article  Google Scholar 

  • Thackeray, S. J., I. D. Jones & S. C. Maberly, 2008. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. Journal of Ecology 96: 523–535.

    Article  Google Scholar 

  • Thackeray, S. J., T. H. Sparks, M. Fredriksen, S. Burthe, P. J. Bacon, J. R. Bell, M. S. Botham, T. M. Brereton, P. W. Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J. M. Elliott, R. Harrington, D. Johns, I. D. Jones, J. T. Jones, D. I. Leech, D. B. Roy, W. A. Scott, M. Smith, R. J. Smithers, I. J. Winfield & S. Wanless, 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304–3313.

    Article  Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.

    Article  Google Scholar 

  • Twiss, M. R., R. M. L. McKay, R. A. Bourbonniere, G. S. Bullerjahn, H. J. Carrick, R. E. H. Smith, J. G. Winter, N. A. D’souza, P. C. Furey, A. R. Lashaway, M. A. Saxton & S. W. Wilhelm, 2012. Diatoms abound in ice-covered Lake Erie: An investigation of offshore winter limnology in Lake Erie over the period 2007 to 2010. Journal of Great Lakes Research 38: 18–30.

    Article  Google Scholar 

  • United States Environmental Protection Agency, 2016. Standard Operating Procedure for Zooplankton Analysis LG403, https://www.epa.gov/sites/production/files/2017-01/documents/sop-for-zooplankton-analysis-201607-22pp.pdf.

  • USEPA, 1993. Method 365.1, Revision 2.0: Determination of Phosphorus by Semi-Automated Colorimetry. Cincinnati, Ohio, USA.

  • Vehmaa, A. & K. Salonen, 2009. Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquatic Ecology 43: 693–705.

    Article  CAS  Google Scholar 

  • Virro, T., J. Haberman, M. Haldna & K. Blank, 2009. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquatic Ecology 43: 755–764.

    Article  CAS  Google Scholar 

  • Wang, M., X. Xu, Z. Wu, X. Zhang, P. Sun, Y. Wen, Z. Wang, X. Lu, W. Zhang, X. Wang & Y. Tong, 2019. Seasonal Pattern of Nutrient Limitation in a Eutrophic Lake and Quantitative Analysis of the Impacts from Internal Nutrient Cycling. Environmental Science and Technology 53: 13675–13686.

    Article  CAS  Google Scholar 

  • Wang, Q., J. Qi, H. Wu, Y. Zeng, W. Shui, J. Zeng & X. Zhang, 2020. Freeze-thaw cycle representation alters response of watershed hydrology to future climate change. Catena 195: 104767.

    Article  Google Scholar 

  • Watkins, J., L. Rudstam, & K. Holeck, 2011. Length-weight regressions for zooplankton biomass calculations—A review and a suggestion for standard equations. https://ecommons.cornell.edu/handle/1813/24566.

  • Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487–495.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego, California.

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer, New York. https://ggplot2.tidyverse.org.

  • Wickham, H., R. François, L. Henry, & K. Müller, 2018. dplyr: A Grammar of Data Manipulation. https://cran.r-project.org/package=dplyr.

  • Wickham, H., & L. Henry, 2017. tidyr: Easily Tidy Data with “spread()” and gather()’ Functions. , https://cran.r-project.org/package=tidyr.

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climatic effects on the phenology of lake processes. Global Change Biology. 10: 1844–1856.

    Article  Google Scholar 

  • Winslow, L., J. Read, R. Woolway, J. Brentrup, T. Leach, & J. Zwart, 2017. rLakeAnalyzer: Lake Physics Tools. https://cran.r-project.org/package=rLakeAnalyzer.

  • Wojciechowska, W. & T. Lenard, 2014. Effect of extremely severe winters on under-ice phytoplankton development in a mesotrophic lake (Eastern Poland). Oceanological and Hydrobiological Studies 43: 147–153.

    Article  CAS  Google Scholar 

  • Woolway, R. I., B. M. Kraemer, J. D. Lenters, C. J. Merchant, C. M. O’Reilly & S. Sharma, 2020. Global lake responses to climate change. Nature Reviews Earth & Environment 1: 388.

    Article  Google Scholar 

  • Yang, B., M. G. Wells, B. C. McMeans, H. A. Dugan, J. A. Rusak, G. A. Weyhenmeyer, J. A. Brentrup, A. R. Hrycik, A. Laas, R. M. Pilla, J. A. Austin, P. J. Blanchfield, C. C. Carey, M. M. Guzzo, N. R. Lottig, M. D. Mackay, T. A. Middel, D. C. Pierson, J. Wang & J. D. Young, 2021. A New Thermal Categorization of Ice-covered Lakes. Geophysical Research Letters 48: e2020GL091374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeileis, A., G. Grothendieck, J. A. Ryan, J. M. Ulrich, & F. Andrews, 2020. zoo: S3 Infrastructure for Regular and Irregular Time Series (Z’s Ordered Observations). Journal of Statistical Software 14: 1–27.

Download references

Acknowledgements

We thank many people for their assistance in the field, including DJ Joung, Peter Isles, Meg Leduc, Brad Roy, Steve Cluett, Natalie Flores, Jake Calvitti, Thomas Hamling, Brian O’Malley, Hannah Lister, and Haley Grigel. Frances Ianucci, Saul Blocher, and Alex Medvedeff, Yaoyang Xu, and Ismar Biberovic assisted with nutrient sample processing. We thank two anonymous reviewers for their valuable and insightful comments on our manuscript. This material is based upon work supported by the U.S. Geological Survey under Cooperative Agreement No. G16AP00087 to the Vermont Water Resources and Lakes Studies Center. This work was also supported by the University of Vermont Biology Department, the Morse Fund, the UVM Roberto Fabri Fialho Research Award to ARH, the Vermont Space Grant Consortium under NASA Cooperative Agreement NNX15AP86H, and a NASA Earth and Space Science Fellowship to ARH under NASA Cooperative Agreement 80NSSC18K1394 P00001. SM was supported by NSF REU Award DBI-1358838.

Funding

This material is based upon work supported by the U.S. Geological Survey under Cooperative Agreement No. G16AP00087 to the Vermont Water Resources and Lakes Studies Center. This work was also supported by the University of Vermont Biology Department, the Morse Fund, the UVM Roberto Fabri Fialho Research Award to ARH, the Vermont Space Grant Consortium under NASA Cooperative Agreement NNX15AP86H, and a NASA Earth and Space Science Fellowship to ARH under NASA Cooperative Agreement 80NSSC18K1394 P00001. SM was supported by NSF REU Award DBI-1358838.

Author information

Authors and Affiliations

Authors

Contributions

ARH, JDS, and SM were involved in field data collection and all authors were involved in data analysis. ARH and SM processed samples and wrote initial drafts of the manuscript. All authors were involved in critical review and revision of the manuscript and have approved the final version.

Corresponding author

Correspondence to Allison R. Hrycik.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling editor: Gideon Gal

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrycik, A.R., McFarland, S., Morales-Williams, A. et al. Winter severity shapes spring plankton succession in a small, eutrophic lake. Hydrobiologia 849, 2127–2144 (2022). https://doi.org/10.1007/s10750-022-04854-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04854-4

Keywords

Navigation