Skip to main content
Log in

An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

In the last 40 years, the shallow steppe lake, Neusiedler See, was ice covered between 0 and 97 days. The North Atlantic Oscillation (NAO) as well as the Mediterranean Oscillation affected the lake and its conditions during winter. Both climate indices correlated negatively with the duration of ice cover and the timing of ice-out. Average winter phytoplankton biomass increased from less than 0.2 (0.05–0.84) mg FM l−1 in the late 1960s/beginning of 1970s to 3.1 (1.72–5.61) mg FM l−1 in the years 2001–2004. The increase in annual winter biomass of phytoplankton was associated with a significant shift in the composition of the algal assemblage. In the winter 1997/1998, diatoms contributed between 40 and 80% to the phytoplankton biomass while in 2006/2007 cyanoprokaryotes contributed 46%. Mean chlorophyll-a concentrations during winter were significantly correlated with those of total phosphorus (Ptot). Together with cold-water species (rotifer Rhinoglena fertöensis), perennial, eurythermal ones (copepod Arctodiaptomus spinosus) contributed to the zooplankton community. High zooplankton numbers were encountered when rotifers, particularly when densities of Rhinoglena fertöensis were high (r 2 = 0.928). Zooplankton abundance and biomass varied from year to year but correlated positively with Chl-a (biomass − r 2 = 0.69; numbers − r 2 = 0.536). Winter zooplankton populations were primarily influenced by winter conditions, but in early winter also by survival of autumn populations, i.e., the more adults of Arctodiaptomus spinosus survived into winter, the higher was the zooplankton biomass in early winter. Phyto- and zooplankton dynamics in shallow lakes of the temperate region seem to critically depend on the biomass in autumn and on winter conditions, specifically on ice conditions and thus are related to climate signals such as the NAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian R, Deneke R, Mischke U, Stellmacher R, Lederer P (1995) A long-term study of the Heiligensee (1975–1992). Evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems. Arch Hydrobiol 133:315–337

    Google Scholar 

  • Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwat Biol 41:621–623

    Article  Google Scholar 

  • Agbeti MD, Smol JP (1995) Winter limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia 304:221–234

    Article  CAS  Google Scholar 

  • Andersen JM, Jacobsen OS (1979) Production and decomposition of organic matter in eutrophic Frederiksborg Slotssö, Denmark. Arch Hydrobiol 85:511–542

    CAS  Google Scholar 

  • Andrew TE, Fitzsimons EM (1992) Seasonality, population dynamics and production of planktonic rotifers in Lough Neagh, Northern Ireland. Hydrobiologia 24:147–164

    Article  Google Scholar 

  • Assel RA, Herche LR (1998) Ice-on, ice-off, and ice duration for lakes and rivers with long-term records. In: Shen HT (ed) Ice in surface waters. Proc 14th international symposium on Ice, Potsdam, USA, Balkema, Rotterdam, pp 147–151

  • Barbanti L, Bonacina C, Calderoni A, Carollo A, de Bernardi R, Guilizzoni P, Nocentini AM, Ruggiu D, Saraceni C, Tonolli L (1974) Indagini ecologiche sul Lago d’Endine. Edizioni dell’Istituto Italiano di Idrobiologia Verbania, Pallanza

    Google Scholar 

  • Bosselmann S (1974) The crustacean plankton of Lake Esrom. Arch Hydrobiol 74:18–31

    Google Scholar 

  • Brandl Z (2005) Freshwater copepods and rotifers: predators and their pray. Hydrobiologia 546:475–489

    Article  Google Scholar 

  • Danilov RA, Ekelund GA (2001) Phytoplankton communities at different depths in two eutrophic and two oligotrophic temperate lakes at higher latitude during the period of ice cover. Acta Protozool 40:197–201

    Google Scholar 

  • Dokulil M (1979) Optical properties, colour and turbidity. In: Löffler H (ed) Neusiedlersee: the limnology of a shallow lake in central Europe. Monographiae Biologicae, vol 37. Dr. W. Junk bv Publishers, The Hague, pp 151–167

  • Dokulil M (1984) Assessment of components controlling phytoplankton photosynthesis and bacterioplankton production in a shallow, alkaline, turbid lake (Neusiedlersee, Austria). Int Rev ges Hydrobiol 69:679–727

    Article  Google Scholar 

  • Dokulil M (2008) Comparative primary production. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, San Diego in print

    Google Scholar 

  • Eckel O (1953) Zur Thermik des Neusiedlersees. Wetter Leben 5:72–78

    Google Scholar 

  • Einsle U (1983) Die Limnologie des Mindelsees. In: Der Mindelsee bei Radolfzell. Monographie eines Naturschutzgebietes auf dem Bodanrück, Natur- und Landschaftsschutzgebiete Baden-Württemberg 11:161–218

  • Fitzsimons AG, Andrew TE (1993) The seasonal succession of the zooplankton of Lough Neagh. In: Wood RB, Smith RV (eds) Lough Neagh: the ecology of a multipurpose water resource, vol 69. Kluwer, Dordrecht, Boston London, pp 281–326 Monographiae Biologicae

    Google Scholar 

  • Forsström L, Sorvari S, Rautio M, Sonninen E, Korhola A (2007) Changes in physical and chemical limnology and plankton during the spring melt period in a Subarctic Lake. Internat Rev Hydrobiol 30:1–325

    Google Scholar 

  • George GE (2009) The impact of climate change on European lakes. Springer, Berlin in print

    Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic oscillation. Limnol Oceanogr 45:1058–1066

    Google Scholar 

  • Haberman J, Virro T (2004) Zooplankton. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallin, pp 233–251

    Google Scholar 

  • Herodek S, Oláh J (1973) Primary production in the frozen Lake Balaton. Annal Biol Tihany 40:197–201

    CAS  Google Scholar 

  • Herodek S, Tamás G (1975) Phytoplankton production in Lake Balaton. Symp Biol Hung 15:29–34

    Google Scholar 

  • Herzig A (1979) The zooplankton of the open lake. In: Löffler H (ed) Neusiedlersee. The limnology of a shallow lake in Central Europe, vol 37. Dr. W. Junk bv Publishers, The Hague, pp 281–335 Monographiae Biologicae

    Google Scholar 

  • Herzig A (1980) Ten years quantitative data on a population of Rhinglena fertöensis (Brachionidae, Monogononta). Hydrobiologia 73:161–167

    Article  Google Scholar 

  • Herzig A (1983a) The ecological significance of the relationship between temperature and duration of embryonic development in planktonic freshwater copepods. Hydrobiologia 100:65–91

    Article  Google Scholar 

  • Herzig A (1983b) Comparative studies on the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia 104:237–246

    Article  Google Scholar 

  • Herzig A (1987) The analysis of planktonic rotifer populations: a plea for long-term investigations. Hydrobiologia 147:163–180

    Article  Google Scholar 

  • Herzig A (2001) Zooplankton. In: Dokulil M, Hamm A, Kohl J-G (eds) Ökologie und Schutz von Seen. Facultas UTB, Wien, pp 132–161

    Google Scholar 

  • Herzig A, Dokulil M (2001) Neusiedler See—ein Steppensee in Europa. In: Dokulil M, Hamm A, Kohl J-G (eds) Ökologie und Schutz von Seen. Facultas UTB, Wien, pp 401–415

    Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Sorrano PA, Stewart KM (2007) Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol Oceanogr 52:2013–2026

    Google Scholar 

  • Jones HR, Lack TJ, Jones CS (1979) Population dynamics and production of Daphnia hyalina var. lacustris in Farmoor I, a shallow eutrophic reservoir. J Plankton Res 1:45–65

    Article  Google Scholar 

  • Karetnikov SG, Naumenko MA (2008) Recent trends in Lake Ladoga ice cover. Hydrobiologia 599:41–48

    Article  Google Scholar 

  • Kasprzak P, Ronneberger D (1982) Vergleichende Untersuchungen zur Struktur und Dynamik des Zooplanktons im Stechlinsee, Nehmitzsee und Haussee 1978/79. Limnologica (Berlin) 14:263–295

    Google Scholar 

  • Leppäranta M (2009) Radiation transfer and heat budget during the ice season in Lake Pääjärvi. This volume

  • Leppäranta M, Reinart A, Erma A, Arst H, Hussainov M, Sipelgas L (2003) Investigation of ice and water properties and under-ice light fields in fresh and brackish water bodies. Nord Hydrol 34:245–266

    Google Scholar 

  • Leßmann D, Ender R, Hofmann H, Rücker J, Beulker C, Nixdorf B (2003) Der Einfluß lang dauernder Eisbedeckung auf die Phytoplankton-Entwicklung in sauren Tagbauseen. Dt Ges Limnol (DGL) Tagungsbericht (Köln) Werder 2003

  • Livingstone DM (1999) Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and to the North Atlantic oscillation. Limnol Oceanogr 44:1486–1497

    Google Scholar 

  • Livingstone DM (2000) Large-scale climatic forcing detected in historical observations of lake ice break-up. Verh Internat Verein Limnol 27:2775–2783

    Google Scholar 

  • Livingstone DM, Adrian R, Arvola L, Blenckner T, Dokulil MT, Hari RE, George DG, Jankowski T, Järvinen M, Jennings E, Nöges P, Nöges T, Straile D, Weyhenmayer GA (2008) Regional and supra-regional coherence in limnological variables. In: George DG (ed) The impact of climate change on European Lakes. Springer, Berlin in print

    Google Scholar 

  • Löffler H (1979) Neusiedlersee: the limnology of a shallow lake in central Europe. Monographiae Biologicae, vol 37. Dr. W. Junk Publisher, The Hague, pp 1–543

  • Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Morabito G, Ruggio D, Panzani P (2002) Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. J Limnol 61:129–145

    Google Scholar 

  • Morscheid H (1999) Entwicklung und Stellung des Zooplanktons im pelagischen Ökosystem des Ammersees nach der Oligotrophierung (1993–1997). PhD thesis, Univ Vienna

  • Nauwerck A (1963) Die Beziehungen zwischen zooplankton und phytoplankton im See Erken. Uppsala, Schweden. Symp bot Upsal 17:1–163

    Google Scholar 

  • Paloheimo JE (1974) Calculation of instantaneous birth rate. Limnol Oceanogr 19:692–694

    Article  Google Scholar 

  • Pechlaner R (1971) Factors that control the production rate and biomass of phytoplankton in high mountain lakes. Mitt Internat Verein Limnol 19:125–145

    Google Scholar 

  • Phillips KA, Fawley MW (2002) Winter phytoplankton community structure in three shallow temperate lakes during ice cover. Hydrobiologia 470:97–113

    Article  Google Scholar 

  • Pohlmann M, Friedrich G (2001) Bestimmung der Phytoplanktonvolumina—Methodik und Ergebnisse am Beispiel Niederrhein. Limnologica 31:229–238

    Google Scholar 

  • Ravera O (1969) Seasonal variation of the biomass and biocoenotic structure of plankton of the Bay of Ispra (Lago Maggiore). Verh Internat Verein Limnol 17:237–254

    CAS  Google Scholar 

  • Reitner B, Herzig A, Herndl G (1997) Microbial activity under the ice cover of the shallow Neusiedler See (Austria, Central Europe). Hydrobiologia 357:173–184

    Article  CAS  Google Scholar 

  • Rodhe W (1955) Can plankton production proceed during winter darkness in subarctic lakes? Verh Internat Verein Limnol 12:117–122

    Google Scholar 

  • Rott E (1981) Some results from phytoplankton counting intercalibrations. Schweiz Z Hydrol 43:35–62

    Article  Google Scholar 

  • Schiemer F (1979) The benthic communities of the open lake. In: Löffler H (ed) Neusiedlersee: the limnology of a shallow lake in central Europe. Monographiae Biologicae, vol 37. Dr. W. Junk bv Publishers, The Hague, pp 337–384

  • Schrimpf A (1994) Auswirkungen von Restaurierungsmaßnahmen auf zwei Kleinseen in Bayern und Tirol unter besonderer Berücksichtigung des Zooplanktons. PhD thesis Univ. Innsbruck

  • Šporka F, Livingstone DM, Stuchlík E, Turek J, Galas J (2006) Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia. Bratislava 61(Suppl. 18):S77–S90

    Google Scholar 

  • Sušelj K, Bergant K (2006) Mediterranean oscillation index. Geophys Res 8:02145 Abstracts

    Google Scholar 

  • Talling JF (1962) Freshwater algae. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic Press, New York, pp 743–757

    Google Scholar 

  • Tryfiates GW (1960) Algal photosynthesis as measured by absorption of radioactive carbon from water. Ohio J Sci 60:77–82

    CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Internat Verein Limnol 9:1–38

    Google Scholar 

  • Vörös L, Mózes A, Somogyi B (2009) A five-year study of autotrophic winter picoplankton in Lake Balaton, Hungary. This volume

  • Walz N, Elster HJ, Mezger M (1987) The development of the rotifer community structure in Lake Constance during its eutrophication. Arch Hydrobiol 74:452–487 Monogr Beiträge

    Google Scholar 

  • Weyhenmeyer GA, Meili M, Livingstone DM (2004) Nonlinear temperature response of lake ice breakup. Geophys Res Letters 31:L07203. doi:10.1029/2004GL019530

    Article  Google Scholar 

  • Wright RT (1964) Dynamics of a phytoplankton community in an ice covered lake. Limnol Oceanogr 9:163–178

    Google Scholar 

Download references

Acknowledgments

The continuous support of the staff of the Biological Station Neusiedler See (especially R. Haider, R. Klein, F. Rauchwarter and R. Schalli) is gratefully acknowledged. We thank H. Krisa who did the phytoplankton counts and biomass calculations since 1995. The comments of the reviewers are acknowledged; they helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin T. Dokulil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokulil, M.T., Herzig, A. An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquat Ecol 43, 715–725 (2009). https://doi.org/10.1007/s10452-009-9282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-009-9282-3

Keywords

Navigation