Skip to main content

Advertisement

Log in

Potential effects of warming on the trophic structure of shallow lakes in South America: a comparative analysis of subtropical and tropical systems

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To investigate the potential long-term consequences of environmental warming in subtropical systems, we compare the trophic structure of shallow lakes in tropical and subtropical regions. In total, 25 meso-eutrophic lakes with piscivorous fish were sampled during summer along a latitudinal gradient in South America. The fish catch per unit of effort and the omnivorous fish to zooplankton biomass ratios were significantly lower in the tropical lakes. Despite the lower fish biomass, no significant difference was found in zooplankton or phytoplankton communities or in the zooplankton to phytoplankton biomass ratio between the two sets of lakes. Nevertheless, regression models based on the combined dataset show higher cyanobacteria and total phytoplankton biomass at lower zooplankton to phytoplankton biomass ratio and higher omnivorous fish to zooplankton biomass ratio. Cyanobacteria biomass was dominated by non bloom-forming taxa and was inversely related to the biomass of calanoid copepods suggesting that these herbivores may play an important role in controlling edible cyanobacteria in warm shallow lakes. Overall, our results, however, suggest that warming will have relatively minor impacts on the pelagic trophic structure of shallow subtropical lakes supporting the idea of weaker trophic cascades in warm (sub)tropical lakes in comparison to temperate ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. Reis, J. G. Lundberg, M. H. S. Perez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58: 403–414.

  • Appelberg, M., B. C. Bergquist & E. Degerman, 2000. Using fish to assess environmental disturbance of Swedish lakes and streams – a preliminary approach. International Association of Theoretical and Applied Limnology 27: 311–315.

    Google Scholar 

  • Arim, M., F. Bozinovic & P. A. Marquet, 2007. On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos 116: 1524–1530.

    Article  Google Scholar 

  • Arim, M., S. Abades, G. Laufer, M. Loureiro & P. A. Marquet, 2010. Food web structure and body size: trophic position and resource acquisition. Oikos 119: 147–153.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbrichtilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine, M. Meerhoff, S. Gascon & E. Jeppesen, 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnology and Oceanography 55: 1697–1711.

    Article  Google Scholar 

  • Crawley, M. J., 2013. The R book, 2nd ed. Wiley, Chichester:

    Google Scholar 

  • Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from length weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380–1390.

    Article  Google Scholar 

  • Dantas, D. D. F., A. Caliman, R. D. Guariento, R. Angelini, L. S. Carneiro, S. M. Q. Lima, P. A. Martinez & J. L. Attayde, 2019. Climate effects on fish body size-trophic position relationship depend on ecosystem type. Ecography 42: 1579–1586.

    Article  Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van der Gucht, C. Perez-Martinez, T. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. Lopez-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  • Downing, J. A., M. McClain, R. Twilley, J. M. Melack, J. Elser, N. N. Rabalais, W. M. Lewis Jr., R. E. Turner, J. Corredor, D. Soto, A. Yanez-Arancibia, J. A. Kopaska & R. W. Howarth, 1999. The impact of accelerating land-use changes on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46: 109–148.

    Article  Google Scholar 

  • Duffy, J. E., J. S. Lefcheck, R. D. Stuart-Smith, S. A. Navarrete & G. J. Edgar, 2016. Biodiversity enhances reef fish biomass and resistance to climate change. PNAS 113: 6230–6235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont, H. J., I. Vandevelde & S. Dumont, 1975. Dry weight estimates of biomass in a selection of Cladocera, Copepoda and Rotifera from plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Fick, S. E. & R. J. Hijmans, 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.

    Article  Google Scholar 

  • Gelos, M., F. Teixeira-de Mello, G. Goyenola, C. Iglesias, C. Fosalba, F. Garcıa-Rodrıguez, J. P. Pacheco, S. Garcıa & M. Meerhoff, 2010. Seasonal and diel changes in fish activity and potential cascading effects in subtropical shallow lakes with different water transparency. Hydrobiologia 646: 173–185.

    Article  CAS  Google Scholar 

  • Ger, K. A. & R. Panosso, 2014. The effects of a microcystin-producing and lacking strain of Mycrocystis on the survival of a widespread tropical copepod (Notodiaptomus iheringi). Hydrobiologia 738: 61–73.

    Article  CAS  Google Scholar 

  • Ger, K. A., E. Leitao & R. Panosso, 2016a. Potential mechanisms for the tropical copepod Notodiaptomus to tolerate Microcystis toxicity. Journal of Plankton Research 38: 843–854.

    Article  Google Scholar 

  • Ger, K. A., P. Urrutia-Cordero, P. C. Frost, L. A. Hansson, O. Sarnelle, A. E. Wilson & M. Lürling, 2016b. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54: 128–144.

    Article  PubMed  Google Scholar 

  • Ger, K. A., S. Naus-Wiezer, L. De Meester & M. Lürling, 2019. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnology and Oceanography 64: 1214–1227.

    Article  Google Scholar 

  • Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchist & R. D. Holt, 2010. A framework for community interactions under climate change. Trends in Ecology and Evolution 25: 325–331.

    Article  PubMed  Google Scholar 

  • González-Bergonzoni, I., M. Meerhoff, T. A. Davidson, F. Teixeira-de-Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492–503.

    Article  Google Scholar 

  • González-Bergonzoni, I., E. Jeppesen, N. Vidal, F. Teixeira-de-Mello, G. Goyenola, A. López-Rodrigues & M. Meerhoff, 2016. Potential drivers of seasonal shifts in fish omnivory in a subtropical stream. Hydrobiologia 768: 183–196.

    Article  Google Scholar 

  • Gyllström, M., L. A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M. R. Miracle, M. Nykanen, T. Noges, S. Romo, D. Stephen, E. van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.

    Article  Google Scholar 

  • Havens, K. E. & J. R. Beaver, 2013. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia 703: 177–187.

    Article  CAS  Google Scholar 

  • Havens, K. E., A. C. Elia, M. I. Taticchi & R. S. Fulton III., 2009. Zooplankton-phytoplankton relationships in subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628: 165–175.

    Article  CAS  Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. Garcia, S. L. Amsinck, J. C. Paggi, S. José de Paggi & E. Jeppesen, 2011. High predation is the key factor for dominance of small-bodied zooplankton in warm lakes – evidence from lakes, fish exclosures and surface sediment. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • Iglesias, C., M. Meerhoff, L. S. Johansson, M. Vianna, I. González-Bergonzoni, N. Mazzeo, J. P. Pacheco, F. Teixeira-de-Mello, T. L. Lauridsen, M. Søndergaard, G. Goyenola, T. A. Davidson & E. Jeppesen, 2017. Stable isotope analysis confirms substantial diferences between subtropical and temperate shallow lake food webs. Hydrobiologia 784: 111–123.

    Article  Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Meerhoff, K. Holmgren, I. Gonzalez-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring & L. Liboriussen S. E. Larsen, F. Landkildehus & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Restoration 47: 411–487.

    Article  Google Scholar 

  • Jeppesen, E., M. Meerhoff, T. A. Davidson, M. Søndergaard, T. L. Lauridsen, M. Beklioglu, S. Brucet, P. Volta, I. González-Bergonzoni, A. Nielsen & D. Trolle, 2014. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 88–111.

    Article  Google Scholar 

  • Jeppesen, E., D. E. Canfield Jr., R. W. Bachmann, M. Søndergaard, K. E. Havens, L. S. Johansson, T. L. Lauridsen, T. Sh, R. P. Rutter, G. Warren, J. Gaohua & M. V. Hoyer, 2020. Towards predicting climate change effects on lakes: a comparative study of 1600 shallow lakes from subtropical Florida and temperate Denmark reveals substantial differences in nutrient dynamics, metabolism, trophic structure and top-down control. Inland Waters 10: 197–211.

    Article  CAS  Google Scholar 

  • Jensen, H. S. & F. Ø. Andersen, 1992. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography 37: 577–589.

    Article  Google Scholar 

  • Kosten, S., V. L. M. Huszar, N. Mazzeo, M. Scheffer, L. D. Sternberg & E. Jeppesen, 2009. Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecological Applications 19: 1791–1804.

    Article  PubMed  Google Scholar 

  • Kosten, S., V. L. M. Huszar, E. Becares, L. S. Costa, E. van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lurling, T. Noges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Article  Google Scholar 

  • Lacerot, G., C. Kruk, M. Lürling & M. Scheffer, 2013. The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology 58: 494–503.

    Article  Google Scholar 

  • Lacerot, G., S. Kosten, R. Mendonça, E. Jeppesen, J. L. Attayde, N. Mazzeo, F. Teixeira-de-Mello, G. Cabana, M. Arim, J. H. Gomes, T. Sh & M. Scheffer, 2021. Large fish forage lower in the food web and food webs are more truncated in warmer climates. Submitted to this volume

  • Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verhandlungen Der Internationale Vereinigung Der Limnologie 26: 719–730.

    Google Scholar 

  • Lazzaro, X., M. Bouvy, R. A. Ribeiro-Filho, V. S. Oliviera, L. T. Sales, A. R. M. Vasconcelos & M. R. Mata, 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology 48: 649–668.

    Article  Google Scholar 

  • Leitão, E., K. A. Ger & R. Panosso, 2018. Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates Microcystis dominance. Frontiers in Microbiology 9: 1–11.

    Article  Google Scholar 

  • Leitão, E., R. Panosso, R. Molica & K. A. Ger, 2020. Top-down regulation of filamentous cyanobacteria varies among a raptorial versus current feeding copepod across multiple prey generations. Freshwater Biology 66: 142–156.

    Article  Google Scholar 

  • Lewis Jr, W. M., 2000. Basis for the protection and management of tropical lakes. Lakes Reservoirs: Research and Management 5: 35–48.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algae number and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A manual on methods for the assessment of secondary productivity in fresh waters IBP Blackwell Scientific Publications, London: 228–265.

    Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira-de-Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira-de-Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predation avoidance behavior of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González-Bergonzoni, J. P. Pacheco, M. Arim, M. Beklioğlu, S. Brucet, G. Goyenola, C. Iglesias, G. Lacerot, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.

    Article  Google Scholar 

  • Menezes, R. F., J. L. Attayde, G. Lacerot, S. Kosten, L. C. Souza, L. S. Costa, E. H. Van Nes & E. Jeppesen, 2012. Lower biodiversity of native fish but only marginally altered plankton biomass in tropical lakes hosting introduced piscivorous Cichla cf. ocellaris. Biological Invasions 14: 1353–1363.

    Article  Google Scholar 

  • Menezes, R. F., J. L. Attayde, S. Kosten, G. Lacerot, L. C. Souza, L. S. Costa, L. D. S. L. Sternberg, A. C. Santos, M. M. Rodrigues & E. Jeppesen, 2019. Differences in food webs and trophic states of Brazilian tropical humid and semi-arid shallow lakes: implications of climate change. Hydrobiologia 829: 95–111.

    Article  CAS  Google Scholar 

  • Moss, B., D. Stephen, D. M. Balayla, E. Becares, S. E. Collins, C. Fernandes Alaez, M. Fernandez Alaez, C. Ferriol, P. Garcia, J. Goma, M. Gyllström, L. A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Stahl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentin, W. J. Van de Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649.

    Article  CAS  Google Scholar 

  • Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo & M. Scheffer, 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.

    Article  Google Scholar 

  • Moss, B., E. Jeppesen, M. Søndergaard, T. L. Lauridsen & Z. Liu, 2013. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia 710: 3–21.

    Article  CAS  Google Scholar 

  • NNI, 1986. Water photometric determination of the content of dissolved orthophosphate and the total content of phosphorous compounds by continuous flow analysis. Normcommissie. Nederlands Normalisatie Insituut, The Netherlands. 390: 147.

  • NNI, 1990. Water photometric determination of the content of ammonium nitrogen and the sum of the contents of ammoniacal and organically bound nitrogen according to Kjeldahl by continuous flow analysis. Normcommissie. Nederlands Normalisatie Insituut, The Netherlands. 390: 147.

  • Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 14–36.

    CAS  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W. & V. J. Paul, 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363.

    Article  CAS  PubMed  Google Scholar 

  • Panosso, R., P. Carlsson, B. Kozlowsky-Suzuki, S. M. F. O. Azevedo & E. Granéli, 2003. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169–1175.

    Article  Google Scholar 

  • Pauli, H. R., 1989. A new method to estimate individual dry weights of rotifers. Hydrobiologia 186: 355–361.

    Article  Google Scholar 

  • Pena, E. A. & E. H. Slate, 2019. Gvlma: global Validation of Linear Models Assumptions. R package version 1.0.0.3. https://CRAN.R-project.org/package=gvlma

  • Petry, P. & S. Sotomayor, 2009. Mapping freshwater ecological systems with nested watersheds in South America. The Nature Conservancy. Downloaded at https://databasin.org/datasets/a7585c206eab4c11a57f2eb768351d28/

  • Petry, A. C., T. F. R. Guimarães, F. M. Vasconcellos, S. M. Hartz, F. G. Becker, R. S. Rosa, G. Goyenola, E. P. Caramaschi, J. M. Díaz de Astarloa, L. M. Sarmento-Soares, J. P. Vieira, A. M. Garcia, F. Teixeira de Mello, F. A. G. de Melo, M. Meerhoff, J. L. Attayde, R. F. Menezes, N. Mazzeo & F. Di Dario, 2016. Fish composition and species richness in eastern South American coastal lagoons: additional support for the freshwater ecoregions of the world. Journal of Fish Biology 89: 280–314.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team, 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/.

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archiv Fur Hydrobiologie 8: 71–76.

    Google Scholar 

  • Stephen, D., T. Alfonso, D. M. Balayla, E. Becares, S. E. Collins, C. Fernandes Alaez, M. Fernandez Alaez, C. Ferriol, P. Garcia, J. Goma, M. Gyllström, L. A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, A. Stahl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentin, W. J. Van de Bund, E. Van Donk, E. Vicente, M. J. Villena & B. Moss, 2004. Continental scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment. Freshwater Biology 49: 1517–1524.

    Article  CAS  Google Scholar 

  • Teixeira-de-Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.

    Article  CAS  Google Scholar 

  • Tobler, W., 1987. Measuring spatial resolution. Beijing conference on Land Use and Remote Sensing.

  • Uehlinger, V., 1964. Étude statistique des méthodes de dénombrement planc-tonique. Archival Science 17: 121–123.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitative Phytoplankton –Methodik. Mitt Int Ver Limnol 9: 1–38.

    Google Scholar 

  • Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.

    Article  Google Scholar 

  • Veraart, A. J., J. M. de Klein & M. Scheffer, 2011. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS ONE 6(3): e18508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis, Springer, New York:

    Book  Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phillosophical Transactions of the Royal Society of London B 365: 2093–2106.

    Article  Google Scholar 

  • Worm, B., et al., 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Anne Mette Poulsen for revising the English and two anonymous reviewers for their comments and suggestions to improve the manuscript. We thank our colleagues and students who helped us in the field and/or in the laboratory. We also thank Marten Scheffer for the SALGA project coordination.

Funding

This research was financed by The Netherlands Organization for Scientific Research (NWO) grant W84-549 and WB84-586, The National Geographic Society grant 7864-5; in Brazil by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) grants 480122, 490409, 311427; in Uruguay by PEDECIBA, Maestría en Ciencias Ambientales, Aguas de la Costa S.A., Banco de Seguros del Estado, and the SNI of the Agencia Nacional de Investigación e Innovación (ANII). VH was partially supported by CNPq, Brazil, grant 304284. EJ was supported by the TÛBITAK program BIDEB2232 (project 118C250).

Author information

Authors and Affiliations

Authors

Contributions

NM, SK, GL, and EJ contributed to the conceptual and methodological development of the ‘South American Lake Gradient Analysis’ (SALGA) project. GL and SK co-coordinated the fieldwork. GL, SK, EJ, NM, VH, CWCB, DMM, JLA, and RFM conducted the fieldwork. VH and CK analyzed the phytoplankton samples, GL and CWCB analyzed the zooplankton samples, FTM, JHCG, JLA, NM, and GL analyzed the fish samples. This particular study was conceived by JLA, who wrote the first draft of the manuscript. RFM ran the statistical analyzes and made the tables and most figures. CCCM made Fig. 1 and the analyzes of land use/cover. MM contributed with a theoretical background and valuable suggestions to improve the manuscript. All authors discussed the results, commented on previous versions of the manuscript, and approved this final version.

Corresponding author

Correspondence to José Luiz Attayde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Sidinei Magela Thomaz.

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2021_4753_MOESM1_ESM.pdf

Fig. S1 Simple linear regressions using cladocerans (CLA) and cladocerans to total zooplankton ratio (CLA:TZOO) as the response variables, and cyanobacteria to total phytoplankton (CYA:TPHYTO) and omnivorous fish to total zooplankton (OMN:TZOO) ratios as the predictor variables in subtropical and tropical lakes. The shaded areas on the regression lines denote a 95% confidence interval. (PDF 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attayde, J.L., Menezes, R.F., Kosten, S. et al. Potential effects of warming on the trophic structure of shallow lakes in South America: a comparative analysis of subtropical and tropical systems. Hydrobiologia 849, 3859–3876 (2022). https://doi.org/10.1007/s10750-021-04753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04753-0

Keywords

Navigation