Skip to main content

Advertisement

Log in

Biomass and production of freshwater meiofauna: a review and a new allometric model

  • MEIOFAUNA IN FRESHWATER ECOSYSTEMS
  • Review paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater meiofauna occupies a central role in stream food webs, not always as intermediary but also as top consumers. Consequently, the meiofauna’s transient dynamical patterns and turnover are vital to understand its contribution to the overall production and energy flow within benthic freshwater systems. Here, we revise the current methodological procedures used to estimate production in benthic meiofauna, and compare their biomass and production data (a) to other benthic taxa, (b) in different habitats and systems, and (c) at the species level. Given the phyla diversity and when including temporary meiofauna (i.e. small insect larvae), care must be taken in selecting a production method and/or relying on published generation times. A handful of studies demonstrate that meiofaunal production values are well within the range displayed by macrofauna. We show that temperature-adjusted production and biomass of meiofaunal species from lakes, wetlands, and streams display a positive linear relationship with an exponent around 0.9, whereby biomass explains 90% of the variation in production. Further studies on meiofauna production should test the validity of our proposed allometric model for stream ecosystems and, thus, its possible generality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adkins, S.C. 1997. Vertical distribution and secondary production of invertebrates in three streams of the Cass Basin. Ms Sc. Dissertation, University of Canterbury, New Zealand, 92 pp.

  • Allen, C. R., A. S. Garmestani, T. D. Havlicek, P. A. Marquet, G. D. Peterson, C. Restrepo, C. A. Stow & B. E. Weeks, 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9: 630–643.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D. H., S. Darring & A. C. Benke, 1998. Growth of crustacean meiofauna in a forested floodplain swamp: implications for biomass turnover. Journal of the North American Benthological Society 17: 21–36.

    Article  Google Scholar 

  • Baldock, B. M. & M. A. Sleigh, 1988. The ecology of benthic protozoa in rivers: seasonal variation in numerical abundance in fine sediments. Archiv für Hydrobiologie 111: 409–421.

    Google Scholar 

  • Balsamo, M., T. Artois, J. P. S. Smith III, M. A. Todaro, L. Guidi, B. S. Leander & N. W. L. Van Steenkiste. 2020. The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). Hydrobiologia. https://doi.org/10.1007/s10750-020-04287-x.

  • Banse, K. & S. Mosher, 1980. Adult body mass and annual production/biomass relationships of field populations. Ecological Monographs 50: 355–379.

    Article  Google Scholar 

  • Bar-On, Y.M., R. Phillips & R. Milo, 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences Jun 2018, 115 (25) 6506–6511.

  • Belgrano, A., A. P. Allen, B. J. Enquist & J. F. Gillooly, 2002. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecology Letters 5: 611–613.

    Article  Google Scholar 

  • Benke, A. C., 1976. Dragonfly production and prey turnover. Ecology 57: 915–927.

    Article  Google Scholar 

  • Benke, A. C., 1979. A modification of the Hynes method for estimating secondary production with particular significance for multivoltine populations. Limnology and Oceanography 24: 168–171.

    Article  Google Scholar 

  • Benke, A. C., 1984. Secondary production of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York: 289–322.

    Google Scholar 

  • Benke, A. C., 1993. Concepts and patterns of invertebrate production in running waters. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 25: 15–38.

    Google Scholar 

  • Benke, A. C., 1996. Secondary production of macroinvertebrates. In Hauer, F. R. & G. A. Lamberti (eds), Methods in stream ecology. Academic Press, California: 557–578.

    Google Scholar 

  • Benke, A. C. & A. D. Huryn, 2007. Secondary production of macroinvertebrates. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press/Elsevier, Burlington: 691–710.

    Chapter  Google Scholar 

  • Benke, A. C. & A. D. Huryn, 2010. Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society 29: 264–285.

    Article  Google Scholar 

  • Benke, A. C. & J. B. Wallace, 2015. High secondary production in a Coastal Plain river is dominated by snag invertebrates and fuelled mainly by amorphous detritus. Freshwater Biology 60: 236–255.

    Article  Google Scholar 

  • Bergtold, M. & W. Traunspurger, 2005. Benthic production by micro-, meio-, and macrobenthos in the profundal zone of an oligotrophic lake. Journal of the North American Benthological Society 24: 321–329.

    Article  Google Scholar 

  • Bergtold, M. & W. Traunspurger, 2006. Production of freshwater nematodes. In Abebe, E., I. Andrassy & W. Traunspurger (eds), Freshwater Nematodes: Ecology and taxonomy. CAB International, Wallingford: 94–104.

    Chapter  Google Scholar 

  • Borgmann, U., 1987. Models on the slope of, and biomass flow p, the biomass size spectrum. Canadian Journal of Fisheries and Aquatic Sciences 44: 136–140.

    Article  Google Scholar 

  • Boudreau, P. R. & L. M. Dickie, 1992. Biomass spectra of aquatic ecosystems in relation to fisheries yield. Canadian Journal of Fisheries and Aquatic Sciences 49: 1528–1538.

    Article  Google Scholar 

  • Bourassa, N. & A. Morin, 1995. Relationships between size structure of invertebrate assemblages and trophy and substrate composition in streams. Journal of the North American Benthological Society 14: 393–403.

    Article  Google Scholar 

  • Bott, T. L. & L. A. Kaplan, 1989. Densities of benthic protozoa and nematodes in a Piedmont stream. Journal of the North American Benthological Society 8: 187–196.

    Article  Google Scholar 

  • Bretschko, G., 1992. Differentiation between epigeic and hypogeic fauna in gravel streams. Regulated Rivers 7: 17–22.

    Article  Google Scholar 

  • Brey, T., 1990. Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight. Meeresforschung 32: 329–343.

    Google Scholar 

  • Brey, T., 1999. Growth performance and mortality in aquatic benthic invertebrates. Advances in Marine Biology 35: 153–223.

    Article  Google Scholar 

  • Brey, T., 2012. A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production. Limnology and Oceanography: Methods 10: 581–589.

    Google Scholar 

  • Brey, T., A. Jarre-Teichmann & O. Borlic, 1996. Artificial neural network versus multiple linear regression: predicting P/B ratios from empirical data. Marine Ecology Progress Series 140: 251–256.

    Article  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Brüchner-Hüttemann, H., C. Ptatscheck & W. Traunspurger, 2019. Unicellular organisms in benthic habitats on different substrates in a first-order stream and their contribution to secondary production. Aquatic Microbial Ecology 83: 49–63.

    Article  Google Scholar 

  • Brüchner-Hüttemann, H., C. Ptatscheck & W. Traunspurger, in press. Meiofauna in stream habitats: temporal dynamics of abundance, biomass and secondary production in different substrate microhabitats in a first-order stream. Freshwater Biology.

  • Butkas, K. J., Y. Vadeboncoeur & M. J. Vander Zanden, 2011. Estimating benthic invertebrate production in lakes: a comparison of methods and scaling from individual taxa to the whole-lake level. Aquatic Sciences 73: 153–169.

    Article  CAS  Google Scholar 

  • Calder, W. A., 1996. Size, function, and life history. Dover Publications, Inc., Mineola: 431.

    Google Scholar 

  • Cartes, J. E., T. Brey, J. C. Sorbe & F. Maynou, 2002. Comparing production biomass ratios of benthos and suprabenthos in macrofaunal marine crustaceans. Canadian Journal of Fisheries and Aquatic Sciences 59: 1616–1625.

    Article  Google Scholar 

  • Cattaneo, A., 1993. Size spectra of benthic communities in Laurentian streams. Canadian Journal of Fisheries and Aquatic Sciences 50: 2659–2666.

    Article  Google Scholar 

  • Cushman, R. M., H. H. Shugart Jr., S. G. Hildebrand & J. W. Elwood, 1978. The effect of growth curve and sampling regime on instantaneous-growth, removal-summation, and Hynes/Hamilton estimates of aquatic insect production: A computer simulation. Limnology and Oceanography 23: 184–189.

    Article  Google Scholar 

  • Cusson, M. & E. Bourget, 2005. Global patterns of macroinvertebrate production in marine benthic habitats. Marine Ecology Progress Series 297: 1–14.

    Article  Google Scholar 

  • Cyr, H. & M. L. Pace, 1993. Allometric theory: extrapolations from individuals to communities. Ecology 74: 1234–1245.

    Article  Google Scholar 

  • Damuth, J. D., 1992. Taxon-free characterization of animal communities. In Behrensmeyer, A. K., J. D. Damuth, W. A. DiMichele, R. Potts, H. Sues & S. L. Wing (eds), Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals. University of Chicago Press, Chicago: 183–203.

    Google Scholar 

  • Dolbeth, M., M. Cusson, R. Sousa & M. A. Pardal, 2012. Secondary production as a tool for better understanding of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 69: 1230–1253.

    Article  Google Scholar 

  • Dole-Olivier, M.-J., P. Marmonier & J.-L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37: 257–276.

    Article  Google Scholar 

  • Downing, J.A., 1984. Assessment of secondary production: The first step. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity. IBP Handbook 17: 1–18.

  • Duplisea, D. E., 2000. Benthic organism biomass size-spectra in the Baltic Sea in relation to the sediment environment. Limnology and Oceanography 45: 558–568.

    Article  CAS  Google Scholar 

  • Edgar, G. J., 1990. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. Journal of Experimental Marine Biology and Ecology 137: 195–214.

    Article  Google Scholar 

  • Edmondson, W. T. & G. G. Winberg, 1971. Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook, Oxford.

    Google Scholar 

  • Faupel, M. & W. Traunspurger, 2012. Secondary production of a zoobenthic community under metal stress. Water Research 46: 3345–3352.

    Article  CAS  PubMed  Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology and Oceanography 37: 1202–1220.

    Article  Google Scholar 

  • Gerlach, S. A., 1971. On the importance of marine meiofauna for the benthos communities. Oecologia 6: 176–190.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, D. M. & A. C. Benke, 1979. Methods of calculating cohort production from field data-some relationships. Limnology and Oceanography 24: 171–176.

    Article  Google Scholar 

  • Gladden, J. E. & L. A. Smock, 1990. Macroinvertebrate distribution and production on the floodplains of two lowland headwater streams. Freshwater Biology 24: 533–545.

    Article  Google Scholar 

  • Goedkoop, W. & R. K. Johnson, 1996. Pelagic-benthic coupling: profundal benthic community response to spring diatom deposition in mesotrophic Lake Erken. Limnology and Oceanography 41: 636–647.

    Article  CAS  Google Scholar 

  • Górska, B. & M. Włodarska-Kowalczuk, 2017. Food and disturbance effects on Arctic benthic biomass and production size spectra. Progress in Oceanography 152: 50–61.

    Article  Google Scholar 

  • Gulatti, R. D., 1974. Laboratory methods in secondary production with special reference to herbivore zooplankton. Hydrobiological Bulletin 8: 255–268.

    Article  Google Scholar 

  • Hakenkamp, C. C. & A. Morin, 2000. The importance of meiofauna to lotic ecosystem functioning. Freshwater Biology 44: 165–175.

    Article  Google Scholar 

  • Hakenkamp, C. C., A. Morin & D. L. Strayer, 2002. The functional importance of freshwater meiofauna. In Rundle, S. D., A. L. Robertson & J. M. Schmid-Araya (eds), Freshwater Meiofauna: Biology and Ecology. Backhuys Publishers, Leiden: 321–335.

    Google Scholar 

  • Hamilton, A. L., 1969. On estimating annual production. Limnology and Oceanography 14: 771–782.

    Article  Google Scholar 

  • Hauer, F. R. & A. C. Benke, 1987. Influence of temperature and river hydrograph on black fly growth rates in a subtropical blackwater river. Journal of the North American Benthological Society 6: 251–261.

    Article  Google Scholar 

  • Hauer, F. R. & A. C. Benke, 1991. Rapid growth of snag-dwelling chironomids in a blackwater river: the influence of temperature and discharge. Journal of the North American Benthological Society 10: 154–164.

    Article  Google Scholar 

  • Hillbricht-Ilkowska, A. & T. Węgleńska, 1970. The effects of sampling frequency and the methods of assessment on the production values obtained for several zooplankton species. Ekologia Polska 18: 539–556.

    Google Scholar 

  • Hirt, M. R., T. Lauermann, U. Brose, L. P. J. J. Noldus & A. I. Dell, 2017. The little things that run: a general scaling of invertebrate exploratory speed with body mass. Ecology 98: 2751–2757.

    Article  PubMed  Google Scholar 

  • Holopainen, I. J. & L. Paasivirta, 1977. Abundance and biomass of the meiozoobenthos in the oligotrophic and mesohumic lake Pääjärvi, southern Finland. Annales Zoologici Fennici 14: 124–134.

    Google Scholar 

  • Humphreys, W. F., 1979. Production and respiration in animal populations. Journal of Animal Ecology 48: 427–453.

    Article  Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 1986. A method for obtaining in situ growth rates of larval Chironomidae (Diptera) and its application to studies of secondary production. Limnology and Oceanography 31: 216–221.

    Article  Google Scholar 

  • Huryn, A. D. & A. C. Benke, 2007. Relationship between biomass turnover and body size for stream communities. In Hildrew, A. G., D. G. Raffaeli & R. Edmonds-Brown (eds), Body Size. The Structure and Function of Aquatic Ecosystems. 55–76.

  • Hynes, H. B. N. & M. J. Coleman, 1968. A simple method of assessing the annual production of stream benthos. Limnology and Oceanography 13: 569–573.

    Article  Google Scholar 

  • Johnson, M. G., 1974. Production and productivity. In Brinkhurst, R. O. (ed.), The Benthos of Lakes. The Macmillan Press Ltd., London: 46–64.

    Chapter  Google Scholar 

  • Kerr, S. R. & L. M. Dickie, 2001. The biomass spectrum: a predator-prey theory of aquatic production. Columbia University Press, Columbia.

    Google Scholar 

  • Kowarc, V. A., 1990. Production of a harpacticoid copepod from the meiofaunal community of a second order mountain stream. Stygologia 5: 25–32.

    Google Scholar 

  • Kurashov, E. A., 2002. The role of meiobenthos in lake ecosystems. Aquatic Ecology 36: 447–463.

    Article  Google Scholar 

  • Lauzon, M. & P. P. Harper, 1986. Life history and production of the stream-dwelling mayfly Habrophlebia vibrans Needham (Ephemeroptera; Leptophlebiidae). Canadian Journal of Zoology 64: 2038–2045.

    Article  Google Scholar 

  • Lemke, A. M. & A. C. Benke, 2009. Spatial and temporal patterns of microcrustacean assemblage structure and secondary production in a wetland ecosystem. Freshwater Biology 54: 1406–1426.

    Article  Google Scholar 

  • Majdi, N., I. Threis & W. Traunspurger, 2017. It’s the little things that count: meiofaunal density and production in the sediment of two headwater streams. Limnology and Oceanography 62: 151–163.

    Article  Google Scholar 

  • Marxsen, J., 2006. Bacterial production in the carbon flow of a central European stream, the Breitenbach. Freshwater Biology 51: 1838–1861.

    Article  CAS  Google Scholar 

  • Méthot, G., C. Hudon, P. Gagnon, B. Pinel-Alloul, A. Armellin & A.-M. Tourville Poirier, 2012. Macroinvertebrate size-mass relationships: how specific should they be? Freshwater Science 31: 750–764.

    Article  Google Scholar 

  • Moens, T. & M. Vincx, 1997. A state of the art on meiofaunal respiration and production. In Baeyens, J., F. Dehairs & L. Goeyens (eds), Second network meeting of the European network for integrated marine system analysis. VUB-University Press, Brussels: 347–361.

  • Morin, A., 1997. Empirical models predicting population abundance and productivity in lotic systems. Journal of the North American Benthological Society 16: 319–337.

    Article  Google Scholar 

  • Morin, A. & N. Bourassa, 1992. Modèles empiriques de la production annuelle et du rapport P/B d’invertébrés benthiques d’eau courante. Canadian Journal of Fisheries and Aquatic Sciences 49: 532–539.

    Article  Google Scholar 

  • Morin, A. & P. Dumont, 1994. A simple model to estimate growth rate of lotic insect larvae and its value for estimating population and community production. Journal of the North American Benthological Society 13: 357–367.

    Article  Google Scholar 

  • Morin, A. & D. Nadon, 1991. Size distribution of epilithic lotic invertebrates and implications for community metabolism. Journal of the North American Benthological Society 10: 300–308.

    Article  Google Scholar 

  • Morin, A., T. A. Mousseau & D. A. Roff, 1987. Accuracy and precision of secondary production estimates. Limnology and Oceanography 32: 1342–1352.

    Article  Google Scholar 

  • Morin, A., M. Constantin & R. H. Peters, 1988. Allometric models of simulid growth rates and their use for estimation of production. Canadian Journal of Fisheries and Aquatic Sciences 45: 315–324.

    Article  Google Scholar 

  • Morin, A., M. A. Rodríguez & D. Nadon, 1995. Temporal and environmental variation in the biomass spectrum of benthic invertebrates in streams: an application of thin-plate splines and relative warp analysis. Canadian Journal of Fisheries and Aquatic Sciences 52: 1881–1892.

    Article  Google Scholar 

  • Morin, A., N. Bourassa & A. Cattaneo, 2001. Use of size spectra and empirical models to evaluate trophic relationships in streams. Limnology and Oceanography 46: 935–940.

    Article  Google Scholar 

  • Naegeli, M. W. & U. Uehlinger, 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed-river. Journal of the North American Benthological Society 16: 794–804.

    Article  Google Scholar 

  • Nalepa, T. F. & M. A. Quigley, 1983. Abundance and biomass of the meiobenthos in nearshore Lake Michigan with comparisons to the macrobenthos. Journal of Great Lakes Research 9: 530–547.

    Article  Google Scholar 

  • O’Doherty E. C., 1988. The ecology of meiofauna in an Appalachian headwater stream. PhD Dissertation, University of Georgia, Athens, Georgia, USA.

  • Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, T. R., 1969. The use of particle size spectra in determining the structure of a plankton community. Journal of the Oceanographic Society of Japan. 25: 172–181.

    Article  Google Scholar 

  • Pehofer, H. E., 1989. Spatial distribution of the nematode fauna and production of three nematodes (Tobrilus gracilis, Monhystera stagnalis, Ethmolaimus pratensis) in the profundal of Piburger See (Austria, 913m). Internationale Revue der gesamten Hydrobiologie 74: 135–168.

    Article  Google Scholar 

  • Peralta-Maraver, I., J. Galloway, M. Posselt, S. Amon, J. Reiss, J. Lewandowski & A. Robertson, 2018. Environmental filtering and community delineation in the streambed ecotone. Scientific Reports 8: 15871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Plante, C. & J. A. Downing, 1989. Production of freshwater invertebrate populations in lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1489–1498.

    Article  Google Scholar 

  • Plante, C. & J. A. Downing, 1990. Empirical evidence for differences among methods for calculating secondary production. Journal of the North American Benthological Society 9: 9–16.

    Article  Google Scholar 

  • Platt, T. 1985. Structure of marine ecosystems: its allometric basis. In Ulanowicz, R. E. & T. Platt (eds), Ecosystem theory for biological oceanography. Proceedings of a symposium sponsored by SCOR, NSERC, NSF, Unesco, and the US Office of Naval Research Canadian Bulletin of Fisheries and Aquatic Sciences 213: 55–64.

  • Platt, T. & K. Denman, 1977. Organization in the pelagic ecosystems. Helgoländer wiss. Meeresunters. 30: 575–581.

    Article  Google Scholar 

  • Poff, N. L., M. A. Palmer, P. L. Angermeier, R. L. Vadas, C. C. Hakenkamp, A. Bely, P. Arensburger & A. P. Martin, 1993. Size structure of the metazoan community in a Piedmont stream. Oecologia 95: 202–209.

    Article  PubMed  Google Scholar 

  • Quiñones, R. A., 1994. A comment on the use of allometry in the study of pelagic ecosystem processes. Scientia Marina (Barcelona) 58: 11–16.

    Google Scholar 

  • Quiñones, R. A., T. Platt & J. Rodríguez, 2003. Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Progress in Oceanography 57: 405–427.

    Article  Google Scholar 

  • R Development Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ramsay, P. M., S. D. Rundle, M. J. Attrill, M. G. Uttley, P. R. Williams, P. S. Elsmere & A. Abada, 1997. A rapid method for estimating biomass size spectra of benthic metazoan communities. Canadian Journal of Fisheries and Aquatic Sciences 54: 1716–1724.

    Article  Google Scholar 

  • Reid, B., 2007. Energy flow in a floodplain aquifer ecosystem. PhD Dissertation University of Montana, Montana, 250 pp.

  • Reiss, J. & J. M. Schmid-Araya, 2010. Life history allometries and production of small fauna. Ecology 91: 497–507.

    Article  PubMed  Google Scholar 

  • Reynolds Jr., S. K. & A. C. Benke, 2005. Temperature-dependent growth rates of larval midges (Diptera: Chironomidae) from a southeastern US stream. Hydrobiologia 544: 69–75.

    Article  Google Scholar 

  • Reynolds Jr., S. K. & A. C. Benke, 2012. Chironomid production along a hyporheic gradient in contrasting stream types. Freshwater Science 31: 167–181.

    Article  Google Scholar 

  • Riede, J. O., U. Brose, B. Ebenman, U. Jacob, R. Thompson, C. R. Townsend & T. Jonsson, 2011. Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecology Letters 14: 169–178.

    Article  PubMed  Google Scholar 

  • Rigler, F. H. & J. A. Downing, 1984. The calculation of secondary productivity. In Downing, J. A. & F. H. Rigler (eds), A manual on methods for the assessment of secondary productivity. IBP Handbook 17: 19–58.

  • Robertson, A. I., 1979. The relationship between annual production: biomass ratios and lifespans for marine macrobenthos. Oecologia 38: 193–202.

    Article  PubMed  Google Scholar 

  • Robertson, A. L., 1995. Secondary production of a community of benthic Chydoridae (Cladocera: Crustacea) in a large river, UK. Archiv für Hydrobiologie 134: 425–440.

    Google Scholar 

  • San Martin, E., R. P. Harris & X. Irigoien, 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep Sea Research Part II. Topical Studies in Oceanography 53: 1560–1572.

    Article  Google Scholar 

  • Schmid, P. E., 1993. Random patch dynamics of larval Chironomidae (Diptera) in the bed sediments of a gravel stream. Freshwater Biology 30: 239–255.

    Article  Google Scholar 

  • Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2000. Relation between population density and body size in stream communities. Science 289: 1557–1560.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, P. E., J. M. Schmid-Araya & M. Tokeshi, 2020. The scaling of biomass variance across trophic levels in fluvial species communities. Hydrobiologia. https://doi.org/10.1007/s10750-020-04239-5.

    Article  Google Scholar 

  • Schmid-Araya, J. M., 1998. Small-sized invertebrates in a gravel stream: community structure and variability of benthic rotifers. Freshwater Biology 39: 25–39.

    Article  Google Scholar 

  • Schmid-Araya, J. M., 2000. Invertebrate recolonization patterns in the hyporheic zone of a gravel stream. Limnology and Oceanography 45: 1000–1005.

    Article  Google Scholar 

  • Schmidt-Nielsen, K., 1984. Scaling: Why is Animal Size So Important?. Cambridge University Press, New York.

    Book  Google Scholar 

  • Schroeder, F., W. Traunspurger, K. Pettersson & L. Peters, 2012. Temporal changes in periphytic meiofauna in lakes of different trophic states. Journal of Limnology 71: 216–227.

    Article  Google Scholar 

  • Schwinghamer, P., 1981. Characteristic size distributions of integral benthic communities. Canadian Journal of Fisheries and Aquatic Science 38: 1255–1263.

    Article  Google Scholar 

  • Schwinghamer, P., 1983. Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Marine Ecology Progress series 13: 151–166.

    Article  Google Scholar 

  • Schwinghamer, P., B. Hargrave, D. Peer & C. M. Hawkins, 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Marine Ecology Progress Series 31: 131–142.

    Article  Google Scholar 

  • Sheldon, R. W., A. Prakash & W. H. Sutcliffe, 1972. The size distribution of particles in the ocean. Limnology and Oceanography 17: 327–340.

    Article  Google Scholar 

  • Sleigh, M. A., B. M. Baldock & J. H. Baker, 1992. Protozoan communities in chalk streams. Hydrobiologia 248: 53–64.

    Article  Google Scholar 

  • Sprules, W. G. & L. E. Barth, 2015. Surfing the biomass size spectrum: some remarks on history, theory, and application. Canadian Journal of Fisheries and Aquatic Sciences 73: 477–495.

    Article  Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Canadian Journal of Fisheries and Aquatic Sciences 43: 1789–1794.

    Article  Google Scholar 

  • Stead, T. K., J. M. Schmid-Araya & A. G. Hildrew, 2004. The contribution of subsurface invertebrates to benthic density and biomass in a gravel stream. Archiv für Hydrobiologie 160: 171–191.

    Article  Google Scholar 

  • Stead, T. K., J. M. Schmid-Araya, P. E. Schmid & A. G. Hildrew, 2005a. The distribution of body size in a stream community: one system, many patterns. Journal of Animal Ecology 74: 475–487.

    Article  Google Scholar 

  • Stead, T. K., J. M. Schmid-Araya & A. G. Hildrew, 2005b. Secondary production of a stream metazoan community: does the meiofauna make a difference. Limnology and Oceanography 50: 398–403.

    Article  Google Scholar 

  • Strayer, D., 1986. The size structure of a lacustrine zoobenthic community. Oecologia 69: 513–516.

    Article  CAS  PubMed  Google Scholar 

  • Strayer, D. & G. E. Likens, 1986. An energy budget for the zoobenthos of Mirror Lake, New Hampshire. Ecology 67: 303–313.

    Article  Google Scholar 

  • Tod, S. P. & J. M. Schmid-Araya, 2009. Meiofauna versus macrofauna: secondary production of invertebrates in a lowland chalk stream. Limnology and Oceanography 54: 450–456.

    Article  Google Scholar 

  • Tumbiolo, M. L. & J. A. Downing, 1994. An empirical model for the prediction of secondary production in marine benthic invertebrate populations. Marine Ecology Progress Series 114: 165–174.

    Article  Google Scholar 

  • Vranken, G., P. M. J. Herman, M. Vincx & C. Heip, 1986. A re-evaluation of marine nematode productivity. Hydrobiologia 135: 193–196.

    Article  Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 1984. Species size distributions in marine benthic communities. Oecologia 61: 32–41.

    Article  CAS  PubMed  Google Scholar 

  • Waters, T. F., 1977. Secondary production in inland waters. Advances in Ecological Research 10: 91–164.

    Article  Google Scholar 

  • Waters, T. F. & G. W. Crawford, 1973. Annual production of a stream mayfly population: a comparison of methods. Limnology and Oceanography 18: 286–296.

    Article  Google Scholar 

  • Weber, S. & W. Traunspurger, 2015. The effects of predation by juvenile fish predation on the meiobenthic community structure in a natural pond. Freshwater Biology 60: 2392–2409.

    Article  Google Scholar 

  • Weber, S. & W. Traunspurger, 2017. Invasive red swamp crayfish (Procambarus clarkii) and native noble crayfish (Astacus astacus) similarly reduce oligochaetes, epipelic algae, and meiofauna biomass: a microcosm study. Freshwater Science 36: 103–112.

    Article  Google Scholar 

  • Whiles, M. R. & J. B. Wallace, 1995. Macroinvertebrate production in a headwater stream during recovery from anthropogenic disturbance and hydrologic extremes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2404–2422.

    Article  Google Scholar 

  • White, E. P., S. K. M. Ernest, A. J. Kerkhoff & B. J. Enquist, 2007. Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22: 323–330.

    Article  Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.

    Article  Google Scholar 

  • Winberg, G. G., 1971. Methods for the estimation of production of aquatic animals. Academic Press, London.

    Google Scholar 

  • Zaika, V. E., 1973. Specific production of aquatic invertebrates. Halsted Press, New York: 154.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Diego Fontaneto and Sidinei Magela Thomaz from the editorial board of the journal Hydrobiologia for their support and confidence allowing us to compile a special volume on freshwater meiofauna. We appreciate the comments and helpful suggestions of two anonymous referees on a previous draft of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny M. Schmid-Araya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Nabil Majdi, Jenny M. Schmid-Araya & Walter Traunspurger / Patterns and Processes of Meiofauna in Freshwater Ecosystems

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid-Araya, J.M., Schmid, P.E., Majdi, N. et al. Biomass and production of freshwater meiofauna: a review and a new allometric model. Hydrobiologia 847, 2681–2703 (2020). https://doi.org/10.1007/s10750-020-04261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04261-7

Keywords

Navigation