Skip to main content

Advertisement

Log in

The scaling of biomass variance across trophic levels in stream species communities: a macroecological approach

  • MEIOFAUNA IN FRESHWATER ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Much has been published about different aspects of body-size distribution resting on the assumptions of metabolic scaling, although a number of studies in aquatic ecosystems have questioned its generality. This study considers the effects of individual body-mass and biomass variability on scaling properties of multi-species communities (protists, meio- and macroinvertebrates), and their intrinsic variations in assemblage structure. We examine how size traits within communities are distributed on local and regional scales and assess the potential sources of variation affecting whole ecosystems. Our results, built upon seven river catchment communities including 1204 species, revealed micro-meiofauna-dominated biomass distributions driven by stochastic hydrophysical processes that induce a fractal fluctuation scaling, irrespective of trophic levels, shaping local and regional scaling relations. Fractal-scaling differences are largely generated by the frequency of high flow events that influence the biomass assemblage configurations, which are significantly better represented by the Power Fraction model compared to single statistical random models. We conclude that environmental random variability contributes to the decoupling of total biomass and body mass per site from assemblage size, resulting in scale-invariant body-size traits among assemblages and systems. Generally, these findings emphasize that ignoring small-sized species and, thus, the wide range of body sizes makes accurate ecological model predictions, impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arakaki, S. & M. Tokeshi, 2019. Biomass compensation: behind the diversity gradients of tidepool fishes. Population Ecology 2019: 1–10.

    Google Scholar 

  • Armanini, A., 2018. Principles of River Hydraulics. Springer, New York: 217.

    Book  Google Scholar 

  • Calder III, W. A., 1996. Size, Function, and Life History. Dover Publications Inc, Mineola: 431.

    Google Scholar 

  • Cash, J. & J. Hopkinson, 1905–1921. The British Freshwater Rhizopoda and Heliozoa, Vol I–V. The Ray Society. London.

  • Cohen, J. E. & M. Xu, 2015. Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling. Proceedings of the National Academy of Sciences USA 112: 7749–7754.

    Article  CAS  Google Scholar 

  • Cribari-Neto, F. & S. G. Zarkos, 1999. Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing. Economic Reviews 18: 211–228.

    Article  Google Scholar 

  • Donner, J., 1965. Ordnung Bdelloidea (Rotatoria, Rädertiere). Akademie Verlag, Berlin: 297.

    Google Scholar 

  • Duplisea, D. E., 2000. Benthic organism biomass size-spectra in the Baltic Sea in relation to the sediment environment. Limnology and Oceanography 45: 558–568.

    Article  CAS  Google Scholar 

  • Edwards, A. M., J. P. W. Robinson, M. J. Plank, J. K. Baum & J. L. Blanchard, 2017. Testing and recommending methods for fitting size spectra to data. Methods in Ecology and Evolution 8: 57–67.

    Article  Google Scholar 

  • Eisler, Z., I. Bartos & J. Kertész, 2008. Fluctuation scaling in complex systems: Taylor’s law and beyond. Advances in Physics 57: 89–142.

    Article  CAS  Google Scholar 

  • Enquist, B. J. & K. J. Niklas, 2001. Invariant scaling relations across tree-dominated communities. Nature 410: 655–660.

    Article  CAS  PubMed  Google Scholar 

  • Fronczak, A. & P. Fronczak, 2010. Origins of Taylor’s power law for fluctuation scaling in complex systems. Physical Review E 81: 066112.

    Article  CAS  Google Scholar 

  • Gaedke, U., 1993. Ecosystem analysis based on biomass size distributions: a case study of a plankton community in a large lake. Limnology & Oceanography 38: 112–127.

    Article  Google Scholar 

  • Gaston, K. J., P. A. V. Borges, F. He & C. Gaspar, 2006. Abundance, spatial variance and occupancy: arthropod species distribution in the Azores. Journal of Animal Ecology 75: 646–656.

    Article  PubMed  Google Scholar 

  • Gibbins, C., D. Vericat & R. J. Batalla, 2007. When is stream invertebrate drift catastrophic? The role of hydraulic and sediment transport in initiating drift during flood events. Freshwater Biology 52: 2369–2384.

    Article  Google Scholar 

  • Gisiger, T., 2001. Scale invariance in biology: coincidence or footprint of a universal mechanism? Biological Review Cambridge Philosophical Society 76: 161–209.

    Article  CAS  Google Scholar 

  • Gneiting, T. & M. Schlather, 2004. Stochastic models that separate fractal dimension and the Hurst effect. Society for Industrial and Applied Mathematics Review 46: 269–282.

    Google Scholar 

  • Haggerty, S. M., D. P. Batzer & C. R. Jackson, 2002. Macroinvertebrate assemblages in perennial headwater streams of the Coastal Mountain range of Washington, U.S.A. Hydrobiologia 479: 143–154.

    Article  Google Scholar 

  • Holomuzki, J. R. & B. J. F. Biggs, 2003. Sediment texture mediates high-flow effects on lotic macroinvertebrates. Journal of the North American Benthological Society 22: 542–553.

    Article  Google Scholar 

  • Hopper, G. W., K. B. Gido, C. C. Vaughn, T. B. Parr, T. G. Popejoy, C. L. Atkinson & K. K. Gates, 2018. Biomass distribution of fishes and mussels mediates spatial and temporal heterogeneity in nutrient cycling in streams. Oecologia 188: 1133–1144.

    Article  PubMed  Google Scholar 

  • Isaac, N. J. B., D. Storch & C. Carbone, 2013. The paradox of energy equivalence. Global Ecology and Biogeography 22: 1–5.

    Article  Google Scholar 

  • Kalyuzhny, M., Y. Schreiber, R. Chocron, C. H. Flather, R. Kadmon, D. A. Kessler & N. M. Shnerb, 2014. Temporal fluctuation scaling in populations and communities. Ecology 95: 1701–1709.

    Article  PubMed  Google Scholar 

  • Kendal, W. S. & B. Jørgensen, 2011. Tweedie convergence: a mathematical basis for Taylor’s power law, 1/f noise, and multifractality. Physical review E 84: 066120.

    Article  CAS  Google Scholar 

  • Kilpatrick, A. M. & A. R. Ives, 2003. Species interactions can explain Taylor’s power law for ecological time series. Nature 422: 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Lynn, D. H., 2008. The Ciliated Protozoa Characterization, Classification, and Guide to the Literature, 3rd ed. Springer, New York.

    Google Scholar 

  • Marquet, P. A., R. A. Quiñones, S. Abades, F. Labra, M. Tognelli, M. Arim & M. Rivadeneira, 2005. Scaling and power-laws in ecological systems. Journal of Experimental Biology 208: 1749–1769.

    Article  PubMed  Google Scholar 

  • Ogden, G. G. & R. H. Hedley, 1980. An atlas of freshwater testate amoebae. Soil Science 130: 176.

    Article  Google Scholar 

  • Page, F. C. & F. J. Siemensma, 1991. Nackte Rhizopoda und Heliozoa. Gustav Fischer, Stuttgart: 297.

    Google Scholar 

  • Park, S.-J., R. A. J. Taylor & P. S. Grewald, 2013. Spatial organization of soil nematode communities in urban landscapes: Taylor’s Power Law reveals life strategy characteristics. Applied Soil Ecology 64: 214–222.

    Article  Google Scholar 

  • Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cambridge: 329.

    Book  Google Scholar 

  • Platt, T. & K. Denman, 1977. Organisation in the pelagic ecosystem. Helgoländer Meeresuntersuchungen 30: 575–581.

    Article  Google Scholar 

  • Quintana, X. D., F. A. Comin & R. Moreno-Amich, 2002. Biomass-size spectra in aquatic communities in shallow fluctuating Mediterranean salt marshes (Emporda wetlands, NE Spain). Journal of Plankton Research 24: 1149–1161.

    Article  Google Scholar 

  • R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Robert, A., 2003. River Processes. An Introduction to fluvial dynamics. ARNOLD, London: 214.

    Google Scholar 

  • Schmid, P. E., 1992. Habitat preferences as patch selection of larval and emerging chironomids (Diptera) in a gravel brook. Netherlands Journal of Aquatic Ecology 26: 419–429.

    Article  Google Scholar 

  • Schmid, P. E., 1993. A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers—with particular reference to a numerical taxonomic approach. Part I. Diamesinae, Prodiamesinae and Orthocladiinae. Wasser und Abwasser, Supplement 3: 1–514.

    Google Scholar 

  • Schmid, P. E., 2000. The fractal properties of habitat and patch structure in benthic ecosystems. Advances Ecological Research 30: 339–401.

    Article  Google Scholar 

  • Schmid, P.E. & J. M. Schmid-Araya, in press. Application of multifractal analyses to habitat complexity research in stream systems: a cross-scale approach. In Tokeshi, M. (ed.), Habitat Complexity in Aquatic Systems: Ecological Perspectives.

  • Schmid, P. E. & J. M. Schmid-Araya, 1997. Predation on meiobenthic assemblages: resource use of a tanypod guild (Chironomidae, Diptera) in a gravel stream. Freshwater Biology 38: 67–91.

    Article  Google Scholar 

  • Schmid, P. E. & J. M. Schmid-Araya, 2007. Body size and scale invariance: multifractals in invertebrate communities. In Hildrew, A. G., D. G. Raffaelli & R. Edmonds-Brown (eds), Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge: 140–166.

    Chapter  Google Scholar 

  • Schmid, P. E. & J. M. Schmid-Araya, 2010. Scale-dependent relations between bacteria, organic matter and invertebrates in a headwater-stream. Fundamental and Applied Limnology, Archiv für Hydrobiologie 176: 275–365.

    Google Scholar 

  • Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2000. Relationship between population density and body size in stream communities. Science 389: 1557–1560.

    Article  Google Scholar 

  • Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2002. Scaling in stream communities. Proceedings of the Royal Society London B 269: 2587–2594.

    Article  Google Scholar 

  • Schmid-Araya, J. M., 2000. Invertebrate recolonization patterns in the hyporheic zone of a gravel stream. Limnology & Oceanography 45: 1000–1005.

    Article  Google Scholar 

  • Schmid-Araya, J. M. & P. E. Schmid, in press. Habitat complexity and meiofauna: a review and new insights on food-search dynamics of organisms across habitat patches of varying complexity. In Tokeshi, M. (ed.), Habitat Complexity in Aquatic Systems: Ecological Perspectives.

  • Schmid-Araya, J. M., P. E. Schmid, A. Robertson, J. Winterbottom, C. Gjerlov & A. G. Hildrew, 2002. Connectance in stream food webs. Journal of Animal Ecology 71: 1056–1062.

    Article  Google Scholar 

  • Schmid-Araya, J. M., P. E. Schmid, S. P. Tod & G. F. Esteban, 2016. Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97: 3099–3109.

    Article  PubMed  Google Scholar 

  • Schönborn, W., 1977. Production studies on protozoa. Oecologia 27: 171–184.

    Article  PubMed  Google Scholar 

  • Smith, B. & J. B. Wilson, 1996. A consumer’s guide to evenness indices. Oikos 76: 70–82.

    Article  Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.

    Article  Google Scholar 

  • Stead, T. K., J. M. Schmid-Araya & A. G. Hildrew, 2004. The contribution of subsurface invertebrates to benthic density and biomass in a gravel stream. Archiv für Hydrobiologie 160: 171–191.

    Article  Google Scholar 

  • Stead, T. K., J. M. Schmid-Araya, P. E. Schmid & A. G. Hildrew, 2005. The distribution of body size in a stream community: one system, many patterns. Journal of Animal Ecology 74: 475–487.

    Article  Google Scholar 

  • Taylor, L. R., 1961. Aggregation, variance and the mean. Nature 189: 732–735.

    Article  Google Scholar 

  • Taylor, L. R., R. A. J. Taylor, I. P. Woiwood & J. N. Perry, 1983. Behavioural dynamics. Nature 303: 801–804.

    Article  Google Scholar 

  • Tokeshi, M., 1995. On the mathematical basis of the variance-mean power relationship. Research in Population Ecology 37: 43–48.

    Article  Google Scholar 

  • Tokeshi, M., 1996. Power fraction: a new explanation for species abundance patterns in species-rich assemblages. Oikos 75: 543–550.

    Article  Google Scholar 

  • Tokeshi, M., 1999. Species Coexistence. Ecological and revolutionary perspectives. Blackwell Science Ltd., Oxford: 454.

    Google Scholar 

  • Violle, C., B. J. Enquist, B. J. McGill, L. Jiang, C. H. Albert, C. Hulshof, V. Jung & J. Messier, 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology and Evolution 27: 244–252.

    Article  PubMed  Google Scholar 

  • Voković, M. & A. Soro, 1992. Determination of hydraulic conductivity of porous media from grain-size composition. Water Resource publications, Littleton: 83.

    Google Scholar 

  • Warwick, R. M., S. L. Dashfield & P. J. Somerfield, 2006. The integral structure of a benthic infaunal assemblage. Journal of Experimental Marine Biology and Ecology 330: 12–18.

    Article  Google Scholar 

  • Witek, Z. & A. Krajewska-Soltys, 1989. Some examples of the epipelagic plankton size structure in latitude oceans. Journal of Plankton Research 11: 1143–1155.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from NERC (NER/A/S/2001/00566), the Royal Society, and in parts from the Austrian Science Fund FWF: P15597-B03. We thank Dr C. Fesl, Mr R. Niederreiter and E. Lanzenberger for their assistance and suggestions during field and lab work. We also appreciate the comments and helpful suggestions of two anonymous referees on an earlier draft of the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Schmid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Nabil Majdi, Jenny M. Schmid-Araya & Walter Traunspurger / Patterns and Processes of Meiofauna in Freshwater Ecosystems

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, P.E., Schmid-Araya, J.M. & Tokeshi, M. The scaling of biomass variance across trophic levels in stream species communities: a macroecological approach. Hydrobiologia 847, 2705–2723 (2020). https://doi.org/10.1007/s10750-020-04239-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04239-5

Keywords

Navigation