Skip to main content
Log in

Caddisflies growth and size along an elevation/temperature gradient

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Temperature influences biological systems ranging from biochemical reactions to ecosystem processes. Some traits such as growth, development, and body size are related to temperature. Here, we ask the question whether the size of trichopteran changes along a ~ 1200 elevation gradient, as a predictor of temperature. Additionally, we measured in laboratory growth rates of the caddisfly Schizopelex festiva under three temperature regimes. Specimens of Hydropsyche ambigua, Hydropsyche siltalai, and Rhyacophila adjuncta were smaller at low than at high elevations. For each increase in 2 °C (downwards 400 m in the mountain), there was a 6.6 ± 2.3% decrease in size. Under laboratory conditions, specimens of Schizopelex festiva grew faster at 20 °C (34.7 ± 6.5 µg mg−1 day−1) than at 15 and 10 °C (18.9 ± 4.1 and 16.7 ± 2.3 µg mg−1 day−1, respectively). We conclude that caddisflies are sensitive to temperature along elevation gradients; we predict that ongoing global warming may affect aquatic insects body size and other related parameters such as survival and fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnett, A. E. & N. J. Gotelli, 1999. Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule. Evolution 53: 1180–1188.

    PubMed  Google Scholar 

  • Ashton, K. G. & C. R. Feldman, 2003. Bergmann’s rule in non-avian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 7: 1151–1163.

    Google Scholar 

  • Atkinson, D., 1994. Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research 25: 1–58.

    Google Scholar 

  • Atkinson, D., 1995. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. Journal of Thermal Biology 20: 61–74.

    Google Scholar 

  • Ayala, D., H. Caro-Riaño, J.-P. Dujardin, N. Rahola, F. Simard & D. Fontenille, 2011. Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. Infection, Genetics and Evolution 11: 940–947.

    PubMed  PubMed Central  Google Scholar 

  • Ayres, M., M. Jr. Ayres, D. L. Ayres & A. S. Santos, 2007. BioEstat 5.0: aplicações estatísticas nas áreas das ciências biológicas e médicas. ONG Mamirauá, Belém.

  • Azevedo-Pereira, H. V. S., M. A. S. Graça & J. M. González, 2006. Life history of Lepidostoma hirtum in an Iberian stream and its role in organic matter processing. Hydrobiologia 559: 183–192.

    Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Google Scholar 

  • Campbell, R. G., M. M. Wagner, G. J. Teegarden, C. A. Boudreau & E. G. Durbin, 2001. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Marine Ecology Progress Series 221: 161–183.

    Google Scholar 

  • Chown, S. L. & C. J. Klok, 2003. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26: 445–455.

    Google Scholar 

  • Cressa, C., V. Maldonado, S. Segnini & M. M. Chacón, 2008. Size variation with elevation in adults and larvae of some Venezuelan stoneflies (Insecta: Plecoptera: Perlidae). Aquatic Insects: International Journal of Freshwater Entomology 30: 127–134.

    Google Scholar 

  • Dahlgaard, J., E. Hasson & V. Loeschcke, 2001. Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: plasticity or thermal adaptation? Evolution 55: 738–747.

    CAS  PubMed  Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.

    CAS  Google Scholar 

  • David, J. R., H. Legout & B. Moreteau, 2006. Phenotypic plasticity of body size in a temperate population of Drosophila melanogaster: when the temperature-size rule does not apply. Journal of Genetics 85: 9–23.

    PubMed  Google Scholar 

  • Décamps, H., 1967. Écologie des trichoptères de la vallée d’Aure (Hautes-Pyrénées). Annales de Limnologie. 3: 399–577.

    Google Scholar 

  • Fick, E. & R. J. Hijmans, 2017. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.

    Google Scholar 

  • Forster, J. & A. G. Hirst, 2012. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Functional Ecology 26: 483–492.

    Google Scholar 

  • Forster, J., A. G. Hirst & D. Atkinson, 2011a. How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing. Functional Ecology 25: 1024–1031.

    Google Scholar 

  • Forster, J., A. G. Hirst & G. Woodward, 2011b. Growth and development rates have different thermal responses. The American Naturalist 178: 668–678.

    PubMed  Google Scholar 

  • Forster, J., A. G. Hirst & D. Atkinson, 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America 109: 19310–19314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, D.-M., H.-M. He, C. Zou, H.-J. Xiao & F.-S. Xue, 2016. Life-history responses of the rice stem borer Chilo suppressalis to temperature change: breaking the temperature–size rule. Journal of Thermal Biology 61: 115–118.

    PubMed  Google Scholar 

  • Garske, J., S. M. H. Ismar & U. Sommer, 2015. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oecologia 177: 849–860.

    Google Scholar 

  • Ghosh, S. M., N. D. Testa & A. W. Shingleton, 2013. Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences 280: 20130174.

    PubMed  Google Scholar 

  • Giberson, D. J. & D. M. Rosenberg, 1992. Effects of temperature, food quantity, and nymphal rearing density on life-history traits of a northern population of Hexagenia (Ephemeroptera:Ephemeridae). Journal of the North American Benthological Society 11: 181–193.

    Google Scholar 

  • Gordo, O. & J. J. Sanz, 2005. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146: 484–495.

    PubMed  Google Scholar 

  • González, M. A. & F. Cobo, 2006. Los macroinvertebrados de las aguas dulces de Galicia. Hércules de Ediciones S. A, A Coruña.

    Google Scholar 

  • González, J. M. & M. A. S. Graça, 2003. Conversion of leaf litter to secondary production by a shredding caddisfly. Freshwater Biology 48: 1578–1592.

    Google Scholar 

  • González, M. A. & J. Martínez, 2011. Checklist of the caddisflies of the Iberian Peninsula and Balearic Islands (Trichoptera). Zoosymposia 5: 115–135.

    Google Scholar 

  • González, M. A., L. S. W. Terra, D. Garcia de Jalon & F. Cobo, 1992. Lista faunística y bibliográfica de los Tricópteros (Trichoptera) de la Península Ibérica e Islas Baleares. Asociación Española de Limnología, Madrid.

    Google Scholar 

  • Graf, W., J. Murphy, J. Dahl, C. Zamora-Muñoz & M. J. López-Rodríguez, 2008. Distribution and ecological preferences of European freshwater organisms, Vol. 1. Pensoft Publishers, Sofia, Bulgaria, Trichoptera.

    Google Scholar 

  • Hodkinson, I. D., 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80: 489–513.

    PubMed  Google Scholar 

  • Hoefnagel, K. N. & W. Verberk, 2015. Is the temperature-size rule mediated by oxygen in aquatic ectotherms? Journal of Thermal Biology 54: 56–65.

    PubMed  Google Scholar 

  • Hoog, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.

    Google Scholar 

  • Horne, C. R., A. G. Hirst & D. Atkinson, 2015. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters 18: 327–335.

    PubMed  Google Scholar 

  • Horne, C. R., A. G. Hirst & D. Atkinson, 2018. Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Functional Ecology 32: 948–957.

    Google Scholar 

  • IPCC, 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland.

  • James, F. C., 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 365–390.

    Google Scholar 

  • Kiełbasa, A., A. Walczyńska, E. Fiałkowska, A. Pajdak-Stós & J. Kozłowski, 2014. Seasonal changes in the body size of two rotifer species living in activated sludge follow the temperature-size rule. Ecology and Evolution 4: 4678–4689.

    PubMed  PubMed Central  Google Scholar 

  • Kindlmann, P., A. F. G. Dixon & I. Dostálková, 2001. Role of ageing and temperature in shaping reaction norms and fecundity functions in insects. Journal of Evolutionary Biology 14: 835–840.

    Google Scholar 

  • Kingsolver, J. G. & R. B. Huey, 2008. Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10: 251–268.

    Google Scholar 

  • Lapchin, L. & A. Neveu, 1979. Ecologies des principaux invertebres filtreusrs de la basse nivelle (Pyrenees-Atlantiques). II. Hydropsychidae (Trichoptera). Annales de Limnologie. 15: 139–153.

    Google Scholar 

  • Li, C., X. Luo, X. Huang & B. Guet, 2009. Influences of temperature on development and survival, reproduction and growth of a calanoid copepod (Pseudodiaptomus dubia). The Scientific World Journal 9: 866–879.

    PubMed  PubMed Central  Google Scholar 

  • Livingstone, D. M. & A. E. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. Journal of Paleolimnology 19: 181–198.

    Google Scholar 

  • Malicky, H., 2017. Fauna Europaea: Trichoptera, Caddisflies. Fauna Europaea version 2017. https://fauna-eu.org.

  • Martín, L., 2017. Biodiversidad y conservación de los tricópteros (Insecta: Trichoptera) de la península ibérica y la Macaronesia. PhD thesis, Universidad de Santiago de Compostela, Santiago de Compostela.

  • Martinez, J. M., 2014. Biodiversidad de los tricópteros (Insecta: Trichoptera) de la Península Ibérica: estudio faunístico y biogeográfico. PhD thesis, Universidad de Santiago de Compostela, Santiago de Compostela.

  • Menéndez, R., A. González-Megías, P. Jay-Robert & R. Marquéz-Ferrando, 2014. Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography 23: 646–657.

    Google Scholar 

  • Morrill, J. C., R. C. Bales & M. H. Conklin, 2005. Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering 131: 139–146.

    CAS  Google Scholar 

  • Morse, J. C., 2018. Trichoptera world checklist. entweb.clemson.edu/database/trichopt/index.htm. Accessed 14 March 2018.

  • Nukazawa, K., R. Arai, S. Kazama & Y. Takemon, 2018. Projection of invertebrate populations in the headwater streams of a temperate catchment under a changing climate. Science of the Total Environment 642: 610–618.

    CAS  PubMed  Google Scholar 

  • Norry, F. M., O. A. Bubliy & V. Loeschcke, 2001. Developmental time, body size and wing loading in Drosophila buzzatii from lowland and highland populations in Argentina. Hereditas 135: 35–40.

    CAS  PubMed  Google Scholar 

  • Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    CAS  PubMed  Google Scholar 

  • Pérez-Valencia, L. I. & G. Moya-Raygoza, 2015. Body size variation of Diaphorina citri (Hemiptera: Psyllidae) through an elevation gradient. Annals of the Entomological Society of America 108: 800–806.

    Google Scholar 

  • Perry, A. L., P. J. Low, J. R. Ellis & J. D. Reynolds, 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915.

    CAS  PubMed  Google Scholar 

  • R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/.2010.

  • Rijn, I. V., Y. Buba, J. DeLong, M. Kiflawi & J. Belmaker, 2017. Large but uneven reduction in fish size across species in relation to changing sea temperatures. Global Change Biology 23: 3667–3674.

    PubMed  Google Scholar 

  • Rollinson, N. & L. Rowe, 2018. Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration. Evolution 72: 977–988.

    CAS  PubMed  Google Scholar 

  • Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig & J. A. Pounds, 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.

    CAS  PubMed  Google Scholar 

  • Sheldon, A. L., 2012. Possible climate-induced shift of stoneflies in a southern Appalachian catchment. Freshwater Science 33: 765–774.

    Google Scholar 

  • Tang, J., H. He, C. Chen, S. Fu & F. Xue, 2017. Latitudinal cogradient variation of development time and growth rate and a negative latitudinal body weight cline in a widely distributed cabbage beetle. PLoS ONE 12: e0181030.

    PubMed  PubMed Central  Google Scholar 

  • Terra, L. S. W., M. A. González & F. Cobo, 1997. Observations on flight periods of some caddisflies (Trichoptera: Rhyacophilidae, Limnephilidae) collected with light traps in Portugal. Proceedings of the International Symposium on Trichoptera 8: 453–458.

    Google Scholar 

  • Van Der Have, T. M. & G. De Jong, 1996. Adult size in ectotherms: temperature effects on growth and differentiation. Journal of Theoretical Biology 183: 329–340.

    Google Scholar 

  • Van’t Land, J., P. Van Putten, B. Zwaan, A. Kamping & W. Van Delden, 1999. Latitudinal variation in wild populations of Drosophila melanogaster: heritabilities and reaction norms. Journal of Evolutionary Biology 12: 222–232.

    Google Scholar 

  • Verberk, W. C. E. P., D. T. Bilton, P. Calosi & J. L. Spicer, 2011. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92: 1565–1572.

    PubMed  Google Scholar 

  • Walczyńska, A. & L. Sobczyk, 2017. The underestimated role of temperature-oxygen relationship in large-scale studies on size-to-temperature response. Ecology and Evolution 7: 7434–7441.

    PubMed  PubMed Central  Google Scholar 

  • Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    CAS  Google Scholar 

  • Webb, B. W., P. D. Clack & D. E. Walling, 2003. Water-air temperature relationships in a Devon river system and the role of flow. Hydrological Processes 17: 3069–3084.

    Google Scholar 

Download references

Acknowledgements

We are thankful to Olímpia Sobral for field work support.

Funding

This study was funded by the Portuguese Foundation for Science and Technology (FCT) through the strategic project UID/MAR/04292/2013 granted to MARE and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) through a scholarship granted to Gláucia Bolzan Cogo (PDSE Process no.: 88881.132244/2016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gláucia B. Cogo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cogo, G.B., Martínez, J., Santos, S. et al. Caddisflies growth and size along an elevation/temperature gradient. Hydrobiologia 847, 207–216 (2020). https://doi.org/10.1007/s10750-019-04082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04082-3

Keywords

Navigation