Skip to main content
Log in

Life histories and production of three Rocky Mountain aquatic insects along an elevation-driven temperature gradient

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although temperature is known to influence individual traits such as growth, body size, and fecundity, few studies have examined how these relationships influence population-level secondary production in natural settings. We quantified life history traits and production of three dominant aquatic insects (Ephemeroptera: Ephemerella infrequens; Drunella doddsii; Trichoptera: Hydropsyche cockerelli) along an elevation-driven thermal gradient in the northern Rockies. We predicted that production would be highest at sites where temperature regimes lead to the largest terminal body size, individual fecundity, and reproductive potential (i.e., eggs per female x abundance of mature nymphs or larvae). In general, we found that temperature had idiosyncratic effects on life history traits of the study taxa, with no consistent effect of temperature on production. Although growth rates were generally highest during the warm months, growth did not consistently covary with temperature among sites along the elevation gradient. Terminal body size also differed among sites and was inconsistently related to mean temperature and reproductive potential. One of three taxa, D. doddsii, showed patterns entirely consistent with predictions, including smallest body size, reproductive potential, and secondary production at the warmest, low-elevation sites. Our findings suggest that connections among temperature regime, life history characteristics, and secondary production may not be straightforward, and are likely influenced by characteristics unmeasured in our study, including factors that influence survivorship throughout the larval phase, as well as adult mating or oviposition success. Such additional information will enrich our understanding of thermal effects on aquatic insects, and may contribute to predicting how these taxa may respond to ongoing changes in climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available from the authors upon reasonable request.

References

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller & G. A. Weyhenmeyer, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen, R. K. & G. F. Edmunds, 1965. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). VIII. The subgenus Ephemerella in North America. Misc. Entomological Society of America 4: 244–282.

    Google Scholar 

  • Abramoff, M. D., P. J. Magalhaes & S. J. Ram, 2004. Image Processing with ImageJ. Biophotonics International 11: 36–42.

    Google Scholar 

  • Allen, R. K., 1980. Geographic distribution and reclassification of the subfamily Ephemerellinae (Ephemeroptera: Ephemerellidae), Advances in Ephemeroptera Biology Springer, Boston, MA: 71–91.

    Chapter  Google Scholar 

  • Angilletta, M. J., Jr. & A. E. Dunham, 2003. The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. American Naturalist 162: 332–342.

    Article  PubMed  Google Scholar 

  • Angilletta, M. J., Jr., T. D. Steury & M. W. Sears, 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life– history puzzle. Integrative and Comparative Biology 44: 498–509.

    Article  PubMed  Google Scholar 

  • Angilletta, M. J., Jr. & M. J. Angilletta, 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis, Oxford University Press:

    Book  Google Scholar 

  • Atkinson, D., 1994. Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25: 1–58.

    Article  Google Scholar 

  • Atkinson, D. & R. M. Sibly, 1996. On the solutions to a major life– history puzzle. Oikos 77: 359–365.

    Article  Google Scholar 

  • Benke, A. C., 1984. Secondary production of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects Praeger Publishers: 289–322.

    Google Scholar 

  • Benke, A. C. & A. D. Huryn, 2017. Secondary production and quantitative food webs. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, Vol. 2. Academic Press, New York: 235–254.

    Chapter  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length– mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Biggs, B. J. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22: 209–231.

    Article  CAS  Google Scholar 

  • Bovill, W. D., B. J. Downes & J. Lancaster, 2019. Variations in fecundity over catchment scales: Implications for caddisfly populations spanning a thermal gradient. Freshwater Biology 64: 723–734.

    Article  Google Scholar 

  • Buckley, L. B., G. H. Rodda & W. Jetz, 2008. Thermal and energetic constraints on ectotherm abundance: a global test using lizards. Ecology 89: 48–55.

    Article  PubMed  Google Scholar 

  • Clifford, H. F., M. R. Robertson & K. A. Zelt, (1973). Life cycle patterns of mayflies (Ephemeroptera) from some streams of Alberta, Canada. In Brill E. J. (eds), Proceedings of the First International Conference on Ephemeroptera. Leiden: 122–131.

  • Cogo, G. B., J. Martínez, S. Santos & M. A. S. Graça, 2020. Caddisflies growth and size along an elevation/temperature gradient. Hydrobiologia 847: 207–216.

    Article  CAS  Google Scholar 

  • Cross, W. F., B. R. Johnson, J. B. Wallace & A. D. Rosemond, 2005. Contrasting response of stream detritivores to long-term nutrient enrichment. Limnology and Oceanography 50: 1730–1739.

    Article  CAS  Google Scholar 

  • Durance, I. & S. J. Ormerod, 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 15: 942–957.

    Article  Google Scholar 

  • Farnes, P. E. & B. A. Shafer, 1972. Hydrology of the Gallatin River Drainage, US Dept. of Agriculture Soil Conservation Service, Bozeman, MT:

    Google Scholar 

  • Feio, M. J., T. Alves, M. Boavida, A. Medeiros & M. A. S. Graça, 2010. Functional indicators of stream health: a river-basin approach. Freshwater Biology 55: 1050–1065.

    Article  Google Scholar 

  • Fischer, F. C. J., (1960). Trichopterorum Catalogus. Nederlandsche Entomologische Vereeniging.

  • Fischer, K. & K. Fiedler, 2002. Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evolutionary Ecology 16: 333–349.

    Article  Google Scholar 

  • Fogg, K. S., S. J. O’Daniel, G. C. Poole, A. M. Reinhold & A. Hyman, 2020. A simple, reliable method for long-term, in-stream data logger installation using rock climbing hardware. Methods in Ecology and Evolution 11: 684–689.

    Article  Google Scholar 

  • Forster, J. & A. G. Hirst, 2012. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Functional Ecology 26: 483–492.

    Article  Google Scholar 

  • González, J. M., A. Basaguren & J. Pozo, 2003. Life history, production & coexistence of two leptophlebiid mayflies in three Sites along a Northern Spain stream. Archive Für Hydrobiologie 158: 303–316.

    Article  Google Scholar 

  • Gotelli, N. J. & A. M. Ellison, 2012. Primer of Ecological Statistics, Sinauer Associates Publishers, Sunderland, MA:

    Google Scholar 

  • Gustafson, D. L., (1990). Ecology of aquatic insects in the Gallatin River drainage. Doctoral dissertation, Montana State University, Bozeman, MT, USA.

  • Harper, M. P. & B. L. Peckarsky, 2006. Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change. Ecological Applications 16: 612–621.

    Article  PubMed  Google Scholar 

  • Hawkins, C. P., 1985. Food habits of species of ephemerellid mayflies (Ephemeroptera: Insecta) in streams of Oregon. American Midland Naturalist 113: 343–352.

    Article  Google Scholar 

  • Hauer, F. R. & J. A. Stanford, 1982. Ecology and life-histories of three net-spinning caddisfly species (Hydropsychidae: Hydropsyche) in the Flathead River, Montana. Freshwater Invertebrate Biology 1: 18–29.

    Article  Google Scholar 

  • Hauer, F. R. & G. A. Lamberti, 2017. Methods in Stream Ecology, Elsevier, Burlington, MA:

    Google Scholar 

  • Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Munoz, M. J. López-Rodríguez & W. Graf, 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquatic Sciences 71: 3–14.

    Article  Google Scholar 

  • Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.

    Article  Google Scholar 

  • Honěk, A., 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66: 483–492.

    Article  Google Scholar 

  • Huryn, A. D., 1996. An appraisal of the Allen paradox in a New Zealand trout stream. Limnology and Oceanography 41: 243–252.

    Article  Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 2000. Life history and production of stream insects. Annual Review of Entomology 45: 83–110.

    Article  CAS  PubMed  Google Scholar 

  • IPCC, (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. USA: Cambridge University Press.

  • Isaak, D. J., S. Wollrab, D. Horan & G. Chandler, 2012. Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes. Climatic Change 113: 499–524.

    Article  Google Scholar 

  • Isaak, D. J., J. M. Ver Hoef, E. E. Peterson, D. L. Horan & D. E. Nagel, 2016. Scalable population estimates using spatial– stream– network (SSN) models, fish density surveys, and national geospatial database frameworks for streams. Canadian Journal of Fisheries and Aquatic Sciences 74: 147–156.

    Article  Google Scholar 

  • Jacobsen, D., R. Schultz & A. Encalada, 1997. Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology 38: 247–261.

    Article  Google Scholar 

  • Johnson, B. R., W. F. Cross & J. B. Wallace, 2003. Long-term resource limitation reduces insect detritivore growth in a headwater stream. Journal of the North American Benthological Society 22: 565–574.

    Article  Google Scholar 

  • Junker, J. R., W. F. Cross, J. P. Benstead, A. D. Huryn, J. M. Hood, D. Nelson & J. S. Ólafsson, 2020. Resource supply governs the apparent temperature dependence of animal production in stream ecosystems. Ecology Letters 23: 1809–1819.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karl, I. & K. Fischer, 2008. Why get big in the cold? Towards a solution to a life– history puzzle. Oecologia 155: 215–225.

    Article  PubMed  Google Scholar 

  • Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekell & R. L. Wingate, 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8: 461–466.

    Article  Google Scholar 

  • Keleher, C. J. & F. J. Rahel, 1996. Thermal limits to salmonid distributions in the Rocky Mountain region and potential habitat loss due to global warming: a geographic information system (GIS) approach. Transactions of the American Fisheries Society 125: 1–13.

    Article  Google Scholar 

  • Kishi, D., M. Murakami, S. Nakano & K. Maekawa, 2005. Water temperature determines strength of top-down control in a stream food web. Freshwater Biology 50: 1315–1322.

    Article  Google Scholar 

  • Lancaster, J., B. J. Downes & G. K. Dwyer, 2020. Terrestrial-aquatic transitions: local abundances and movements of mature female caddisflies are related to oviposition habits but not flight capability. Freshwater Biology 65: 908–919.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2019. An Introduction to the Aquatic Insects of North America, 5th ed. Kendall Hunt, Dubuque:

    Google Scholar 

  • Miller, S. W., M. Schroer, J. R. Fleri & T. A. Kennedy, 2020. Macroinvertebrate oviposition habitat selectivity and egg-mass desiccation tolerances: implications for population dynamics in large regulated rivers. Freshwater Science 39: 584–599.

    Article  Google Scholar 

  • Nelson, D., J. P. Benstead, A. D. Huryn, W. F. Cross, J. M. Hood, P. W. Johnson & J. S. Ólafsson, 2017a. Shifts in community structure drive temperature invariance of secondary production in a whole-stream warming experiment. Ecology 98: 1797–1806.

    Article  PubMed  Google Scholar 

  • Nelson, D., J. P. Benstead, A. D. Huryn, W. F. Cross, J. M. Hood, P. W. Johnson & J. S. Ólafsson, 2017b. Experimental whole-stream warming alters community size structure. Global Change Biology 23: 2618–2628.

    Article  PubMed  Google Scholar 

  • Peckarsky, B. L., B. W. Taylor, A. R. McIntosh, M. A. McPeek & D. A. Lytle, 2001. Variation in mayfly size at metamorphosis as a developmental response to risk of predation. Ecology 82: 740–757.

    Article  Google Scholar 

  • Poole, G. C. & C. H. Berman, 2001. An ecological perspective on in– stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management 27: 787–802.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria. https://www.R-project.org

  • Rader, R. B. & J. V. Ward, 1990. Mayfly growth and population density in constant and variable temperature regimes. The Great Basin Naturalist 50: 97–106.

    Google Scholar 

  • Rasmussen, A. K. & J. C. Morse, 2020. Distributional checklist of Nearctic Trichoptera (Fall 2020 Revision), Unpublished, Florida A&M University, Tallahassee:, 517.

    Google Scholar 

  • Ross, H. H., 1963. Evolution and classification of the mountain caddisflies. Miscellània Zoològica 1: 94–114.

    Google Scholar 

  • Shah, A. A., B. A. Gill, A. C. Encalada, A. S. Flecker, W. C. Funk, J. M. Guayasamin & C. K. Ghalambor, 2017. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology 31: 2118–2127.

    Article  Google Scholar 

  • Sinclair, B. J., C. M. Williams & J. S. Terblanche, 2012. Variation in thermal performance among insect populations. Physiological and Biochemical Zoology 85: 594–606.

    Article  PubMed  Google Scholar 

  • Stanley, E. H. & R. A. Short, 1988. Temperature effects on warmwater stream insects: a test of the thermal equilibrium hypothesis. Oikos 51: 313–320.

    Article  Google Scholar 

  • Stearns, S. C., 1992. The evolution of life histories, Oxford University Press:

    Google Scholar 

  • Sweeney, B. W., 1978. Bioenergetic and developmental response of a mayfly to thermal variation 1. Limnology and Oceanography 23: 461–477.

    Article  Google Scholar 

  • Sweeney, B. W., 1984. Factors influencing life—history patterns of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects Praeger Publishers, New York: 56–100.

    Google Scholar 

  • Sweeney, B. W. & R. L. Vannote, 1978. Size variation & the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444–446.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney, B. W., R. L. Vannote & P. J. Dodds, 1986. Effects of temperature and food quality on growth and development of a mayfly, Leptophlebia intermedia. Canadian Journal of Fisheries and Aquatic Sciences 43: 12–18.

    Article  Google Scholar 

  • Sweeney, B. W., D. H. Funk, A. A. Camp, D. B. Buchwalter & J. K. Jackson, 2018. Why adult mayflies of Cloeon dipterum (Ephemeroptera: Baetidae) become smaller as temperature warms. Freshwater Science 37: 64–81.

    Article  Google Scholar 

  • Sweeney, B. W., J. K. Jackson, J. D. Newbold & D. H. Funk, 1992. Climate change and the life histories and biogeography of aquatic insects in eastern North America. In Firth, P. & S. G. Fisher (eds), Global Climate Change and Freshwater Ecosystems Springer, New York: 143–176.

    Chapter  Google Scholar 

  • Uno, H. & J. H. Stillman, 2020. Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect. Oecologia 192: 647–656.

    Article  PubMed  Google Scholar 

  • Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 2003. Broad-scale geographical patterns in local stream insect genera richness. Ecography 26: 751–767.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27: 97–117.

    Article  Google Scholar 

  • Waters, T. F., 1972. The drift of stream insects. Annual Review of Entomology 17: 253–272.

    Article  Google Scholar 

  • Webb, B. W., 1996. Trends in stream and river temperature. Hydrological Processes 10: 205–226.

    Article  Google Scholar 

  • Whitlock, C., Cross, W. F., Maxwell, B. D., Silverman, N., & Wade, A. A. (2017). Montana Climate Assessment: Stakeholder driven, science informed. Montana Institute on Ecosystems.

  • Wiggins, G. B., 1996. Larvae of the North American Caddisfly Genera (Trichoptera), University of Toronto Press:

    Book  Google Scholar 

  • Woodward, G., J. B. Dybkjaer, J. S. Ólafsson, G. M. Gíslason, E. R. Hannesdottir & N. Friberg, 2010a. Sentinel systems on the razor’s edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology 16: 1979–1991.

    Article  Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010b. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2093–2106.

    Article  Google Scholar 

Download references

Funding

Funding was provided by the National Science Foundation Division of Environmental Biology (Grant #1556684 to LKA and WFC), Montana State University’s Undergraduate Scholars and Work Study programs, and the Montana Institute on Ecosystems. Thank you to Thomas McMahon for his critiques, suggestions, and time. We greatly thank James Junker for his guidance with statistics, modeling, and R code; the Cross and Albertson lab members for their support; and all technicians and volunteers for their field and laboratory technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Wyatt Cross; Methodology: Wyatt Cross and Jenny McCarty; Formal analysis and investigation: Jenny McCarty, Benjamin Tumulo, Wyatt Cross; Writing original draft: Jenny McCarty; Writing review and editing: Jenny McCarty, Benjamin Tumulo, Wyatt F. Cross, Lindsey Albertson, Leonard Sklar; Funding acquisition: Wyatt F. Cross, Lindsey Albertson, Leonard Sklar; Supervision: Wyatt F. Cross.

Corresponding author

Correspondence to Wyatt F. Cross.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests to disclose. The authors have no competing interests to declare. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Handling Editor: Sally A. Entrekin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarty, J.D., Cross, W.F., Albertson, L.K. et al. Life histories and production of three Rocky Mountain aquatic insects along an elevation-driven temperature gradient. Hydrobiologia 849, 3633–3652 (2022). https://doi.org/10.1007/s10750-022-04978-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04978-7

Keywords

Navigation