Skip to main content
Log in

Three years in the dark: life history and trophic traits of the hyporheic stonefly, Alloperla ishikariana Kohno, 1953 (Plecoptera, Chloroperlidae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Little is known about the ecology of insect species in the hyporheic zone of rivers, despite its importance in understanding how species survive in specialized habitats. We report on the life history and trophic characteristics of the hyporheic stonefly species Alloperla ishikariana Kohno, 1953 (Order: Plecoptera, Family: Chloroperlidae) in a gravel-bed river in northern Japan, using year-round sampling of both benthic and hyporheic larvae, as well as flying adults in the riparian zone. Adults emerged between May and August, and the larval cohort structure consisted of three sized groups with some sex dimorphism in their body size, with an average growth rate of 0.0043 mg/day. Diet analyses based on C and N stable isotope ratios indicated minimal ontogenetic diet shifts. In contrast, the temporal diet shift was more apparent with higher dependence on Oligochaeta in winter, with an increasing dependence on Chironomidae in spring and early summer. Other insect taxa, namely, Leuctridae and small-sized Lepidostoma, demonstrated a high to moderate affinity for the hyporheic zone. Alloperla ishikariana spent most of its larval stage in the hyporheic zone. With adults living from 7 to 10 days, A. ishikariana completes a life span of approximately 3 years with its larval stage in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available from the corresponding author on request.

Consent for publication

The authors agree on the publication of this research.

References

  • Alam, M. K., J. N. Negishi, M. A. T. M. T. Rahman & J. R. Tolod, 2020. Stable isotope ratios of emergent adult aquatic insects can be used as indicators of water pollution in the hyporheic food web. Ecological Indicators 118: 106738.

    Article  CAS  Google Scholar 

  • Alam, M., J. N. Negishi, P. Pongsivapai, S. Yamashita & T. Nakagawa, 2021. Additive effects of sediment and nutrient on leaf litter decomposition and macroinvertebrates in hyporheic zone. Water 13: 1340.

    Article  CAS  Google Scholar 

  • Anderson, N. H. & K. W. Cummins, 1979. Influences of diet on the life histories of aquatic insects. Journal of the Fisheries Board of Canada 36: 335–342.

    Article  Google Scholar 

  • Basaguren, A., P. Riano & J. Pozo, 2002. Life history patterns and dietary changes of several caddisfly (Trichoptera) species in a northern Spain stream. Archiv für Hydrobiologie 155: 23–41.

    Article  Google Scholar 

  • Benke, A. C., 1979. A modification of the Hynes method for estimating secondary production with particular significance for multivoltine populations. Limnology and Oceanography 24: 168–171.

    Article  Google Scholar 

  • Benke, A. C. & J. B. Wallace, 1980. Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream. Ecology 61: 108–118.

    Article  Google Scholar 

  • Berkeley, S. A., M. A. Hixon, R. J. Larson & M. S. Love, 2004. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29: 23–32.

    Article  Google Scholar 

  • Bonada, N. & S. Dolédec, 2018. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions? Aquatic Sciences 80: 7.

    Article  Google Scholar 

  • Boulton, A. J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52: 632–650.

    Article  Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.

    Article  Google Scholar 

  • Brittain, J. E., 1983. The influence of temperature on nymphal growth rates in mountain stoneflies (Plecoptera). Ecology, 64: 440–446.

    Article  Google Scholar 

  • Brittain, J. E., 1990. Life history strategies in Ephemeroptera and Plecoptera. In Campbell, I. C. (ed), Mayflies and Stoneflies: Life Histories and Biology, Springer, Dordrecht: 1–12.

    Google Scholar 

  • Céréghino, R., 2006. Ontogenetic diet shifts and their incidence on ecological processes: a case study using two morphologically similar stoneflies (Plecoptera). Acta Oecologica 30: 33–38.

    Article  Google Scholar 

  • DelVecchia, A. G., J. A. Stanford & X. Xu, 2016. Ancient and methane-derived carbon subsidizes contemporary food webs. Nature Communications 7: 13163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derka, T., J. M. Tierno De Figueroa & I. J. Krno, 2004. Life cycle, feeding and production of Isoptena serricornis (Pictet, 1841) (Plecoptera, Chloroperlidae). International Review of Hydrobiology 89: 165–174.

    Article  Google Scholar 

  • DeWalt, R. E. & K. W. Stewart, 1995. Life histories of stoneflies (Plecoptera) in the Rio Conejos of southern Colorado. The Great Basin Naturalist 55: 1–18.

    Article  Google Scholar 

  • DeWalt, R. E. & G. D. Ower, 2019. Ecosystem services, global diversity, and rate of stonefly species descriptions (Insecta: Plecoptera). Insects 10: 99.

    Article  PubMed Central  Google Scholar 

  • DeWalt, R. E., C. Favret & D. W. Webb, 2005. Just how imperiled are aquatic insects? A case study of stoneflies (Plecoptera) in Illinois. Annals of the Entomological Society of America 98: 941–950.

    Article  Google Scholar 

  • Dorff, N. C. & D. S. Finn, 2020. Hyporheic secondary production and life history of a common Ozark stonefly. Hydrobiologia 847: 443–456.

    Article  CAS  Google Scholar 

  • Dunscombe, M., A. Robertson, I. Peralta-Maraver & P. Shaw, 2018. Community structure and functioning below the streambed across contrasting geologies. Science of the Total Environment 630: 1028–1035.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, R. T., 1998. The hyporheic zone. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion, Springer, New York: 399–429.

    Chapter  Google Scholar 

  • Feeley, H., J. R. Baars & M. Kelly-Quinn, 2009. The life history of Perla bipunctata Pictet, 1833 (Plecoptera: Perlidae) in the upper River Liffey, Ireland. Aquatic Insects 31: 261–270.

    Article  Google Scholar 

  • Finn, D. S., S. L. Johnson, W. J. Gerth, I. Arismendi & J. L. Li, 2022. Spatiotemporal patterns of emergence phenology reveal complex species-specific responses to temperature in aquatic insects. Diversity and Distributions 28(8): 1524–1541.

    Article  Google Scholar 

  • Frutiger, A., 1987. Investigations on the life-history of the stonefly Dinocras cephalotes Curt. (Plecoptera: Perlidae). Aquatic Insects 9: 51–63.

    Article  Google Scholar 

  • Gaillard, J. M., M. Festa-Bianchet, N. G. Yoccoz, A. Loison & C. Toigo, 2000. Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics 31: 367–393.

    Article  Google Scholar 

  • García-Berthou, E. & R. Moreno-Amich, 2000. Food of introduced pumpkinseed sunfish: ontogenetic diet shift and seasonal variation. Journal of Fish Biology 57: 29–40.

    Article  Google Scholar 

  • Gibert, J., J. A. Stanford, M.-J. Dole-Oliver & J. V. Ward, 1994. Basic attributes of groundwater ecosystems and prospects for research. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology, Academic, San Diego: 7–40.

    Chapter  Google Scholar 

  • Gurney, A. B., J. P. Kramer & G. C. Steyskal, 1964. Some techniques for the preparation, study, and storage in microvials of insect genitalia. Annals of the Entomological Society of America 57: 240–242.

    Article  Google Scholar 

  • Hester, E. T. & M. N. Gooseff, 2010. Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environmental Science and Technology 44: 1521–1525.

    Article  CAS  PubMed  Google Scholar 

  • Huxel, G. R. & K. McCann, 1998. Food web stability: the influence of trophic flows across habitats. The American Naturalist 152: 460–469.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, H., M. Kiljunen & P. A. Amundsen, 2012. Dietary ontogeny and niche shift to piscivory in lacustrine brown trout Salmo trutta revealed by stomach content and stable isotope analyses. Journal of Fish Biology 80: 2448–2462.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R. C., M. M. Carreiro, H. S. Jin & J. D. Jack, 2012. Within-year temporal variation and life-cycle seasonality affect stream macroinvertebrate community structure and biotic metrics. Ecological Indicators 13: 206–214.

    Article  Google Scholar 

  • Krause, S., D. M. Hannah, J. H. Fleckenstein, C. M. Heppell, D. Kaeser, R. Pickup, G. Pinay, A. L. Robertson & P. J. Wood, 2011. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4: 481–499.

    Article  CAS  Google Scholar 

  • Lewandowski, J., S. Arnon, E. Banks, O. Batelaan, A. Betterle, T. Broecker, et al., 2019. Is the hyporheic zone relevant beyond the scientific community? Water 11: 2230.

    Article  CAS  Google Scholar 

  • López-Rodríguez, M. J., J. T. de Figueroa & J. Alba-Tercedor, 2008. Life history and larval feeding of some species of Ephemeroptera and Plecoptera (Insecta) in the Sierra Nevada (Southern Iberian Peninsula). Hydrobiologia 610: 277–295.

    Article  Google Scholar 

  • Malard, F., D. Galassi, M. Lafont, S. Dolédec & J. V. Ward, 2003. Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biology 48: 1709–1725.

    Article  CAS  Google Scholar 

  • Malison, R. L., B. K. Ellis, A. G. DelVecchia, H. Jacobson, B. K. Hand, G. Luikart, et al., 2020. Remarkable anoxia tolerance by stoneflies from a floodplain aquifer. Ecology 101: e03127.

    Article  PubMed  Google Scholar 

  • Malmqvist, B., P. Sjöström & K. Frick, 1991. The diet of two species of Isoperla (Plecoptera: Perlodidae) in relation to season, site, and sympatry. Hydrobiologia 213: 191–203.

    Article  Google Scholar 

  • Marbà, N., C. M. Duarte, J. Cebrián, M. E. Gallegos, B. Olesen & K. Sand-Jensen, 1996. Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Marine Ecology Progress Series 137: 203–213.

    Article  Google Scholar 

  • Marchant, R. & G. Hehir, 1999. Growth, production and mortality of two species of Agapetus (Trichoptera: Glossosomatidae) in the Acheron River, south-east Australia. Freshwater Biology 42: 655–671.

    Article  Google Scholar 

  • Marmonier, P., G. Archambaud, N. Belaidi, N. Bougon, P. Breil, E. Chauvet, C. Claret, J. Cornut, T. Datry, M.-J. Dole-Olivier, B. Dumont, N. Flipo, A. Foulquier, M. Gérino, A. Guilpart, F. Julien, C. Maazouzi, D. Martin, F. Mermillod-Blondin, B. Montuelle, Ph. Namour, S. Navel, D. Ombredane, T. Pelte, C. Piscart, M. Pusch, S. Stroffek, A. Robertson, J.-M. Sanchez-Pérez, S. Sauvage, A. Taleb, M. Wantzen & Ph. Vervier, 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Annales de Limnologie-International Journal of Limnology 48: 253–266.

    Article  Google Scholar 

  • Mathers, K. L., S. P. Rice & P. J. Wood, 2017. Temporal effects of enhanced fine sediment loading on macroinvertebrate community structure and functional traits. Science of the Total Environment 599: 599–600.

    Article  PubMed  Google Scholar 

  • McCutchan, J. H., Jr., W. M. Lewis Jr., C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Miyasaka, H. & M. Genkai-Kato, 2009. Shift between carnivory and omnivory in stream stonefly predators. Ecological Research 24: 11–19.

    Article  Google Scholar 

  • Moreira, G. R. & B. L. Peckarsky, 1994. Multiple developmental pathways of Agnetina capitata (Plecoptera: Perlidae) in a temperate forest stream. Journal of the North American Benthological Society 13: 19–29.

    Article  Google Scholar 

  • Mutch, R. A. & G. Pritchard, 1984. The life history of Zapada columbiana (Plecoptera: Nemouridae) in a Rocky Mountain stream. Canadian Journal of Zoology 62: 1273–1281.

    Article  Google Scholar 

  • Nakano, S. & M. Murakami, 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of USA 98: 166–170.

    Article  CAS  Google Scholar 

  • Negishi, J. N., 2019. Does the proportion of crop fields in a small catchment predict coupled benthic–hyporheic invertebrate responses? In Hughes, R. M., et al. (eds), Advances in Understanding Landscape Influences on Freshwater Habitats and Biological Assemblages. AFS Symposia, Atlantic City: 255–274.

  • Negishi, J. N., A. Terui, B. Nessa, K. Miura, T. Oiso, K. Sumitomo, T. Kyuka, M. Yonemoto & F. Nakamura, 2019a. High resilience of aquatic community to a 100-year flood in a gravel-bed river. Landscape and Ecological Engineering 15: 143–154.

    Article  Google Scholar 

  • Negishi, J. N., A. Hibino, K. Miura, R. Kawanishi, N. Watanabe & K. Toyoda, 2019b. Coupled benthic–hyporheic responses of macroinvertebrates to surface water pollution in a gravel-bed river. Freshwater Science 38: 591–604.

    Article  Google Scholar 

  • Neves, M. P., P. Kratina, R. L. Delariva, J. I. Jones & C. B. Fialho, 2021. Seasonal feeding plasticity can facilitate coexistence of dominant omnivores in Neotropical streams. Reviews in Fish Biology and Fisheries 31: 417–432.

    Article  Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5: e9672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrin, Z., J. E. Brittain & S. J. Saltveit, 2013. Mayfly and stonefly species traits and species composition reflect hydrological regulation: a meta-analysis. Freshwater Science 32: 425–437.

    Article  Google Scholar 

  • Post, D. M., 2003. Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84: 1298–1310.

    Article  Google Scholar 

  • R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at https://www.R-project.org]. Accessed 31 Apr 2022.

  • Rahman, M. A. T. M. T., J. N. Negishi, T. Akasaka & F. Nakamura, 2021. Estimates of resource transfer via winged adult insects from the hyporheic zone in a gravel-bed river. Ecology and Evolution 11: 4656–4669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Hernández, J., A. D. Nunn, C. E. Adams & P. A. Amundsen, 2019. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biological Reviews 94: 539–554.

    Article  PubMed  Google Scholar 

  • Sandberg, J. B. & K. W. Stewart, 2005. Life history of the stonefly Isogenoides zionensis (Plecoptera: Perlodidae) from the San Miguel River, Colorado. Illiesia 1: 1–12.

    Google Scholar 

  • Schmidt-Kloiber, A. & D. Hering, 2015. www.freshwaterecology.info – an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282.

    Article  Google Scholar 

  • Shapas, T. J. & W. L. Hilsenhoff, 1976. Feeding habits of Wisconsin’s predominant lotic Plecoptera, Ephemeroptera, and Trichoptera. The Great Lakes Entomologist 9: 175–188.

    Google Scholar 

  • Silveri, L., J. T. de Figueroa & B. Maiolini, 2009. Life cycle and nymphal feeding in the stonefly species Chloroperla susemicheli (Plecoptera: Chloroperlidae). Entomologia Generalis 32: 97–103.

    Article  Google Scholar 

  • Stanford, J. A. & A. R. Gaufin, 1974. Hyporheic communities of two Montana rivers. Science 185: 700–702.

    Article  CAS  PubMed  Google Scholar 

  • Stock, B. C. & B. X. Semmens, 2013. MixSIAR GUI user manual. Version 3.1.

  • Tayasu, I., R. Hirasawa, N. O. Ogawa, N. Ohkouchi & K. Yamada, 2011. New organic reference materials for carbon- and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. Limnology 12: 261–266.

    Article  CAS  Google Scholar 

  • Thomsen, A. G. & N. Friberg, 2002. Growth and emergence of the stonefly Leuctra nigra in coniferous forest streams with contrasting pH. Freshwater Biology 47: 1159–1172.

    Article  Google Scholar 

  • Tierno de Figueroa, J. M. & M. J. López-Rodríguez, 2019. Trophic ecology of Plecoptera (Insecta): a review. The European Zoological Journal 86: 79–102.

    Article  Google Scholar 

  • Tikkanen, P., T. Muotka & A. Huhta, 1994. Predator detection and avoidance by lotic mayfly nymphs of different size. Oecologia 99: 252–259.

    Article  PubMed  Google Scholar 

  • Wagner, F. H. & C. Beisser, 2005. Does carbon enrichment affect hyporheic invertebrates in a gravel stream? Hydrobiologia 544: 189–200.

    Article  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Obihiro Regional Office of the Hokkaido Development Bureau, Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) for their field assistance. Isotope analysis was conducted using the Joint Usage/Research Facilities of the Center for Ecological Research, Kyoto University. The authors would like to thank Editage (www.editage.com) for English language editing.

Funding

This study was supported in part by the research fund for the Tokachi River provided by the MLIT, the Dam Research Fund of Water Resources Environment Center (WEC), and JSPS KAKENHI granted to JNN (18H03408 and 18H03407).

Author information

Authors and Affiliations

Authors

Contributions

JNN contributed to conceptualization (lead), data curation (equal), formal analysis (lead), funding acquisition (equal), project administration, supervision, and writing—original draft preparation (lead). MKA and MATMR contributed to conceptualization (equal), data curation (equal), and formal analysis (equal). RK and HU were involved in funding acquisition (equal), data curation (equal), formal analysis (equal), and writing—review and editing (equal). GY was involved in data curation (equal) and writing—review and editing (equal). KT contributed to funding acquisition (equal) and writing—review and editing (equal).

Corresponding author

Correspondence to J. N. Negishi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial, or otherwise.

Ethical approval

The authors complied all the appropriate research ethics.

Informed consent

The authors agree on the participation of this research.

Additional information

Handling Editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2254 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negishi, J.N., Alam, M.K., Rahman, M.A.T.M.T. et al. Three years in the dark: life history and trophic traits of the hyporheic stonefly, Alloperla ishikariana Kohno, 1953 (Plecoptera, Chloroperlidae). Hydrobiologia 849, 4203–4219 (2022). https://doi.org/10.1007/s10750-022-04976-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04976-9

Keywords

Navigation