Skip to main content
Log in

Phytoplankton, periphyton, and zooplankton patterns in the pelagic and littoral regions of a large subtropical shallow lake

  • PHYTOPLANKTON & BIOTIC INTERACTIONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study aimed at understanding the patterns among size structure of the phytoplankton, periphyton, and zooplankton considering the spatial variability (pelagic and littoral zones) in a subtropical large shallow polymictic lake (Lake Mangueira, southern Brazil). Water samples were gathered at intervals of 3, 5, and 15 days, for 60 days during summer 2012, for physical, chemical, and biological analyses (abundance and maximum linear dimension of subsurface zooplankton, phytoplankton, and glass slide-colonized periphyton) in both lake zones. A summer storm on the 20th day disturbed the periphyton succession in the littoral and pelagic zones. Phytoplankton size classes varied similarly to the smaller size of zooplankton in the pelagic zone, whereas most of periphyton size classes coincided with the larger zooplankton in the littoral zone, evidencing that zooplankton in Lake Mangueira may exploit both communities and both compartments (littoral and pelagic zones). The study demonstrated that the patterns of those communities are dynamic and closely related to the environmental variability in Lake Mangueira.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • American Public Health Association (APHA), 2005. Standard methods for the examination of water and wastewater, Washington (DC).

  • Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield Jr., 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.

    Article  Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology 17: 111–136.

    Article  CAS  Google Scholar 

  • Beisner, B. E., 2001. Plankton community structure in fluctuating environments and the role of productivity. Oikos 95: 496–510.

    Article  Google Scholar 

  • Borduqui, M. & C. Ferragut, 2012. Factors determining periphytic algae succession in a tropical hypereutrophic reservoir. Hydrobiologia 683: 109–122.

    Article  CAS  Google Scholar 

  • Borics, G., B. Tóthmérész, G. Várbíro, I. Grigorszky, A. Czébely & J. Görgényi, 2016. Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia 764: 81–90.

    Article  CAS  Google Scholar 

  • Burks, R. L., D. L. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costand benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  • Cardoso, L. S. & D. Motta Marques, 2004. Structure of the zooplankton community in a subtropical shallow lake (Itapeva Lake—South of Brazil) and its relationship to hydrodynamic aspects. Hydrobiologia 518: 123–134.

    Article  Google Scholar 

  • Cardoso, L. de S., C. R. Fragoso Jr, R. S. Souza & D. Motta-Marques, 2012. Hydrodynamic control of plankton spatial and temporal heterogeneity in subtropical shallow lakes. In: Schulz, H. E, A. L. A. Simões & R. J. Lobosco (eds), Hydrodynamics-Natural Water Bodies. Rijeka: Intech Open Access Publisher: 27–48.

  • Carrick, H. L., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology & Oceanography 38: 1179–1192.

    Article  Google Scholar 

  • Cattaneo, A., M. De Sève, G. Morabito, R. Mosello & G. Tartari, 2011. Periphyton changes over 20 years of chemical recovery of Lake Orta, Italy: differential response to perturbation of littoral and pelagic communities. Journal of Limnology 70(2): 177–185.

    Article  Google Scholar 

  • Crossetti, L. O., L. de S. Cardoso, V. L. M. Callegaro, S. A. Silva, V. Werner, Z. Rosa & D. M. Marques, 2007. Influence of the hydrological changes on the phytoplankton structure and dynamics in a subtropical wetland-lake system. Acta Limnologica Brasiliensia 19: 315–329.

    Google Scholar 

  • Crossetti, L. O., V. Becker, L. de Souza Cardoso, L. R. Rodrigues, L. S. Costa & D. M. L. Motta-Marques, 2013a. Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica 43: 157–163.

    Article  Google Scholar 

  • Crossetti, L. O., C. Stenger-Kovács & J. Padisák, 2013b. Coherence of phytoplankton and attached diatom-based ecological status assessment in Lake Balaton. Hydrobiologia 716: 87–101.

    Article  CAS  Google Scholar 

  • Crossetti, L. O., F. Schneck, L. M. Freitas-Teixeira & D. Motta-Marques, 2014. The influence of environmental variables on spatial and temporal phytoplankton dissimilarity in a large shallow subtropical lake (Lake Mangueira, southern Brazil). Acta Limnologica Brasiliensia 26: 111–118.

    Article  Google Scholar 

  • DeMott, W. R., R. D. Gulati & E. Van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of Cyanobacteria. Limnology and Oceanography 46: 2054–2060.

    Article  Google Scholar 

  • Faria, D. M., L. de Souza Cardoso & D. da Motta Marques, 2017. Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces. Hydrobiologia 788: 267–280.

    Article  Google Scholar 

  • Finkler Ferreira, T., L. O. Crossetti, D. da Motta Marques, L. Cardoso, C. R. Fragoso Jr. & E. H. Van Nes, 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 69: 142–154.

    Article  CAS  Google Scholar 

  • Freitas-Teixeira, L. M., J. E. Bohnenberger, L. H. R. Rodrigues, U. H. Schulz, D. Motta-Marques & L. O. Crossetti, 2016. Temporal variability determines phytoplankton structure over spatial organization in a large shallow heterogeneous subtropical lake. Inland Waters 6: 325–335.

    Article  Google Scholar 

  • Gazulha, V., M. Montú, D. M. L. Motta-Marques & C. C. Bonecker, 2011. Effects of natural banks of free-floating plants on zooplankton community in a shallow subtropical lake in Southern Brazil. Brazilian Archives of Biology and Technology 54: 745–754.

    Article  Google Scholar 

  • Gołdyn, R. & K. Kowalczewska-Madura, 2008. Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland. Journal of Plankton Research 30: 33–42.

    Article  Google Scholar 

  • González-Sagrario, M. A. & E. Balseiro, 2010. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biology 55: 2153–2166.

    Article  Google Scholar 

  • Havens, K. E. & J. R. Beaver, 2013. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia 703: 177–187.

    Article  CAS  Google Scholar 

  • Havens, K. E., T. L. East, R. H. Meeker, W. P. Davis & A. D. Steinman, 1996. Phytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. Journal of Plankton Research 18(4): 551–566.

    Article  Google Scholar 

  • Havens, K. E., J. R. Beaver & T. L. East, 2011. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668: 49–60.

    Article  CAS  Google Scholar 

  • Iglesias, C., G. Goyenola, N. Mazzeo, M. Meerhoff, E. Rodo & E. Jeppesen, 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia 584: 179–189.

    Article  CAS  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. J. de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of smallbodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Hydrobiologia 109: 445–454.

    CAS  Google Scholar 

  • Kist, D. L., L. de Souza Cardoso & D. Motta Marques, 2011. Variação sazonal na forma de controle de bacterioplâncton em uma lagoa rasa subtropical In: Associação Brasileira de Recursos Hídricos (ABRH), Anais do XIX Simpósio Brasileiro de Recursos Hídricos: 1–10.

  • Lacerot, G., C. Kruk, M. Lürling & M. Scheffer, 2013. The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology 58: 494–503.

    Article  Google Scholar 

  • Lavoie, I., P. J. Dillon & S. Campeau, 2009. The effect of excluding diatom taxa and reducing taxonominc resolution on multivariate analysis and stream bioassessment. Ecological Indicators 9: 213–225.

    Article  Google Scholar 

  • Lewis Jr., W. M., 1978. Analysis of succession in a tropical phytoplankton community and a new measure of succession rate. American Naturalist 112: 401–414.

    Article  Google Scholar 

  • Lima, M. S., D. da Motta Marques, N. H. They, K. D. McMahon, L. R. Rodrigues, L. de Souza Cardoso & L. O. Crossetti, 2016. Contrasting factors drive within-lake bacterial community composition and functional traits in a large shallow subtropical lake. Hydrobiologia 778(1): 105–120.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mackeret, F. J. H., J. Heron & J. F. Talling, 1989. Water analysis: some revised methods for limnologists. Freshwater Biological Association: 36–120.

  • McCune, B. & M. J. Mefford, 2011. PC-ORD. Multivariate analysis of ecological data—Version 6.08. MJM Software Design, Gleneden Beach.

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a shallow subtropical lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira-de-Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of contrasting climates and habitat complexity on community structure and predator avoidance behaviour of zooplankton in the shallow lake littoral. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Padisák, J., 1994. Identification of relevant time-scales in nonequilibrium community dynamics: conclusions from phytoplankton surveys. New Zealand Journal of Ecology 18: 169–176.

    Google Scholar 

  • Pappas, J. L. & E. F. Stoermer, 1996. Quantitative method for determining a representative algal sample count. Journal of Phycology 32: 693–696.

    Article  Google Scholar 

  • Rautio, M. & W. F. Vincent, 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology 51: 1038–1052.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Article  Google Scholar 

  • Rimet, F. & A. Bouchez, 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European Rivers. Knowledge and Management of Aquatic Ecosystems 406: 01. https://doi.org/10.1051/kmae/2012018.

    Article  Google Scholar 

  • Rimet, F., A. Bouchez & B. Montuelle, 2015. Benthic diatoms and phytoplankton to assess nutrients in a large lake: complementary of their use in Lake Geneva (France-Switzerland). Ecological Indicators 53: 231–239.

    Article  CAS  Google Scholar 

  • Rodrigues, L. H. R., N. F. Fontoura & D. Motta Marques, 2014. Food-web structure in a subtropical coastal lake: how phylogenetic constraints may affect species linkages. Marine and Freshwater Research 65: 453–465.

    Article  CAS  Google Scholar 

  • Roeder, D. R., 1977. Relationships between phytoplankton and periphyton communities in a central Iowa stream. Hydrobiologia 56: 145–151.

    Article  Google Scholar 

  • Rosa, L. M., L. S. Cardoso, L. O. Crossetti & D. Motta-Marques, 2017. Spatial and temporal variability of zooplankton-phytoplankton interactions in a large subtropical shallow lake dominated by non-toxic cyanobacteria. Marine and Freswater Research 68: 226–243.

    Article  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Santana, L. M. & C. Ferragut, 2016. Strucutural changes of the phytoplankton and epiphyton in na urban hypereutrophic reservoir. Acta Limnologica Brasiliensia: 28–29.

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Schneck, F. & A. S. Mello, 2012. Hydrological disturbance overrides the effect of substratum roughness on the resistance and resilience of stream benhtic algae. Freshwater Biology 57: 1678–1688.

    Article  Google Scholar 

  • Siehoff, S., M. Hammers-Wirtz, T. Strauss & H. T. Ratte, 2009. Periphyton as alternative food source for the filter-feeding cladoceran Daphnia magna. Freshwater Biology 54: 15–23.

    Article  Google Scholar 

  • Sinistro, R., M. L. Sánchez, M. C. Marinone & I. Izaguirre, 2007. Experimental study of the zooplankton impact on the trophic structure of phytoplankton and the microbial assemblages in a temperate wetland (Argentina). Limnologica 37: 88–99.

    Article  Google Scholar 

  • Sládečková, A., 1962. Limnological investigation methods for the periphyton (“Aufwuchs”) community. Botanical Review 28(2): 286–350.

    Article  Google Scholar 

  • Sommer, U., J. Padisak, C. S. Reynolds & P. Juhasz-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Office of Water, US Environmental Protection Agency, Washington DC.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.

    Book  Google Scholar 

  • Work, W., K. Havens, B. Sharfstein & T. East, 2005. How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? Journal of Plankton Research 27: 357–372.

    Article  CAS  Google Scholar 

  • Zingel, P. & J. Haberman, 2008. A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): rotifers and crustaceans versus ciliates. Hydrobiologia 599: 153–159.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the CAPES (Coordination of Improvement of Higher Education Personnel) for a doctoral grant awarded to the second author. We are grateful to CNPq and Dr. Lucia H.R. Rodrigues for logistical support; Dr. Lacina Maria de Freitas-Teixeira for providing algal raw data; the IPH (Hydraulic Research Institute, at UFRGS) technicians for sampling support; and Gustavo F. Hartmann for zooplankton counting. The English language review was done by Cary Collett.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana de Souza Cardoso.

Additional information

Guest editors: Hugo Sarmento, Irina Izaguirre, Vanessa Becker & Vera L. M. Huszar / Phytoplankton and its Biotic Interactions

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, L.d., Faria, D.M.d., Crossetti, L.O. et al. Phytoplankton, periphyton, and zooplankton patterns in the pelagic and littoral regions of a large subtropical shallow lake. Hydrobiologia 831, 119–132 (2019). https://doi.org/10.1007/s10750-018-3729-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3729-2

Keywords

Navigation