Skip to main content

Advertisement

Log in

Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock

  • SANTA ROSALIA 50 YEARS ON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this article, we attempt to estimate the contemporary phytoplankton species pool of a particular lake, by assessing the rate of floral change over a period of 15 years. Phytoplankton time series data from Lake Stechlin, an oligo-mesotrophic lake in the Baltic Lake District (Germany) were used. Of the 254 algal species recorded during the 15-year of studies with roughly biweekly sampling, 212 species were planktonic. In the individual plankton years, the recorded total number of species changed between 97 and 122, of which the number of dominants (>1% contribution to the annual average of total biomass) was only 10–19. The 15-year cumulative number of species exhibited an almost linear increase after an initial saturation phase. This increase was attributed to two reasons: increase of sample size and immigration of species new to the flora. Based on a probabilistic model developed in this study, we estimated the number of co-existing planktonic species of the lake as some 180, and the rate of floral change as 1–2 species per year. Of these co-existing species, only few maintain the matter–energy processing ecosystem functions in any particular plankton year. Selection of these dominants is probably driven by mesoclimatic cycles, coupled with human-induced forcing, like eutrophication. All others are hiding as an ecological memory, in the sense of the capacity or experiences of past states to influence present or future responses of the community. Data analyses suggest that selection of the ‘memory species’ that show temporary abundance increases over shorter (several years) periods are largely dependent upon the dominants. These results show that interspecific interactions and the particular autecological features of the dominants, together with their effects on the whole ecosystem, act as a major organizing force. Some phytoplankton species, like Planktothrix rubescens, are efficient ecosystem engineers with cascading effects of both a top-down and bottom-up nature. Historical scientific data on Planktothrix blooms in Lake Stechlin suggest cyclic patterns in long-term development of phytoplankton which, as the legend of the Red Cock suggests, dates back much further than scientific archives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Burkhardt, A., 1960. Märkische Sagen und Märchen. Altberliner Verlag Lucie Groszer, Berlin.

    Google Scholar 

  • Casper, S. J., 1985. The phytoplankton. In Casper, S. J. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster: 157–195.

  • Casper, S., H.-D. Krausch & L. Krey, 1985. The Lake Stechlin area, past and present, and the Lake Stechlin research project. In Casper, S. J. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster: 3–25.

    Google Scholar 

  • Cellamare, M., M. Leitão, M. Coste, A. Dutartre & J. Haury, 2010. Tropical phytoplankton taxa in Aquitaine lakes (France). Hydrobiologia 639: 115–128.

    Article  Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Faith, D. P. & R. H. Norris, 1989. Correlation of environmental variables with patterns of distribution and abundance of common and rare freshwater macroinvertebrates. Biological Conservation 50: 77–98.

    Article  Google Scholar 

  • Fontane, T., 1898. Der Stechlin. Friedrich Fontane & Co., Berlin.

  • Gaston, K. J., 1994. Rarity. Chapman & Hall, London.

    Google Scholar 

  • Gonsiorczyk, T., P. Casper & R. Koschel, 2001. Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: importance of the permanently oxic sediment surface. Archiv für Hydrobiologie 151: 203–219.

    CAS  Google Scholar 

  • Gonsiorczyk, T., P. Casper & R. Koschel, 2003. Long-term development of the phosphorus accumulation and oxygen-consumption in the hypolimnion of oligotrophic Lake Stechlin and seasonal variations in the pore water chemistry of the profundal sediments. Archiv für Hydrobiologie/Advances in Limnology 58: 73–86.

    CAS  Google Scholar 

  • Gosselain, V. & P. B. Hamilton, 2000. Algamica: revisions to a key-based computerized counting program for free-living, attached and benthic algae. Hydrobiologia 438: 139–142.

    Article  Google Scholar 

  • Hamilton, P. B., 1990. The revised edition of a computerized plankton counter for plankton, periphyton and sediment analyses. Hydrobiologia 194: 23–30.

    Article  Google Scholar 

  • Hardin, G., 1960. The competitive exclusion theory. Science 131: 1292–1297.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15: 56–61.

    Article  Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia or why are there so many kinds of anumals? American Naturalist 93: 145–159.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of plankton. The American Naturalist 95: 137–147.

    Article  Google Scholar 

  • Koschel, R. & D. D. Adams, 2003. Preface: an approach to understanding a temperate oligotrophic lowland lake (Lake Stechlin, Germany). Archiv für Hydrobiologie/Advances in Limnology 58: 1–9.

    Google Scholar 

  • Koschel, R., T. Gonsczyorczik, L. Krienitz, J. Padisák & W. Scheffler, 2002. Primary production of phytoplankton and nutrient metabolism during and after thermal pollution in a deep, oligotrophic lowland lake (Lake Stechlin, Germany). Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 29: 569–575.

    Google Scholar 

  • Krausch, H. -D., 1968. Die Pflanzengesellschaften des Stechlinsee-Gebietes. IV. Die Moore. Limnologica 6: 321–380.

  • Krieger, W., 1927. Der Gattung Centronella Voigt. Berichte der Deutschen Botanischen Gesellschaft 45: 281–290.

    Google Scholar 

  • Longton, R. E., 1992. Reproduction and rarity in British mosses. Biological Conservation 59: 89–98.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The invert microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Mollenhauer, D. & A. Gutowski, 1996. Zu den Roten Listen für die Algen Deutschlands. Schriftenreihe für Vegetationskunde 28: 527–546.

    Google Scholar 

  • Munton, P., 1987. Concepts of threat to the survival of species used in the Red Data books and similar compilations. In Fitter, R. & M. Fitter (eds), The Road to Extinction. IUCN/UNEP, Gland: 72–92.

    Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Németh, J., 2005. Red list of algae in Hungary. Acta Botanica 47: 379–417.

    Article  Google Scholar 

  • OPTICOUNT, 2008. http://science.do-mix.de/software_opticount.php.

  • Padisák, J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary) – a dynamic approach to ecological memory, its possible role and mechanisms. Journal of Ecology 80: 217–230.

    Article  Google Scholar 

  • Padisák, J., 1998. Sudden and gradual responses of phytoplankton to global climate change: case studies from two large, shallow lakes (Balaton, Hungary and the Neusiedlersee Austria/Hungary). In George, D. G., J. G. Jones, P. Puncochar, C. S. Reynolds & D. W. Sutcliffe (eds), Management of Lakes and Reservoirs During Global Change. Kluwer Academic Publishers, Dordrecht, Boston, London: 111–125.

    Google Scholar 

  • Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.

    Article  Google Scholar 

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Article  Google Scholar 

  • Padisák, J., L. Krienitz, R. Koschel & J. Nedoma, 1997. Deep layer picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. European Journal of Phycology 32: 403–416.

    Google Scholar 

  • Padisák, J., F. A. R. Barbosa, R. Koschel & L. Krienitz, 2003a. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 175–199.

    Google Scholar 

  • Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003b. Interannual changes (1994–2000) of phytoplankton of Lake Stechlin. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 101–133.

    Google Scholar 

  • Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003c. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 135–155.

    Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009a. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Padisák, J., É. Hajnal, R. Koschel & L. Krienitz, 2009b. The importance of winter phytoplankton composition in contrasting lakes: a deep stratifying and a shallow polymictic. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 30: 757–760.

    Google Scholar 

  • Padisák, J., É. Hajnal, L. Naselli-Flores, M. T. Dokulil, P. Nõges & T. Zohary, 2010. Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control. Hydrobiologia 639: 205–220.

    Article  Google Scholar 

  • Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.

    Article  Google Scholar 

  • Podani, J., 1988. Syn-Tax III. User’s manual. Abstracta Botanica 12: 1–183.

  • Reveal, J. L., 1981. The concepts of rarity and the population threats in plant communities. In Morse, L. E. & M. S. Henefin (eds), Rare Plant Conservation. The New York Botanical Garden, Bronx: 41–46.

    Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.

    Article  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading. Expectations, Experiences, Extrapolation. Academic Verlag, St. Augustin.

    Google Scholar 

  • Schmidt, A., G. Fehér & J. Padisák, 2003. Rare and interesting green algae in River Danube and its dead and side branches in Southern Hungary. Biologia Bratislava 58: 475–481.

    Google Scholar 

  • Sicko-Goad, L., E. F. Stoermer & J. P. Kociolek, 1989. Diatom resting cell rejuvenation and formation: time course, species records and distribution. Journal of Plankton Research 11: 375–389.

    Google Scholar 

  • Skuja, H., 1938. Süsswasseralgen aus Griechenland und Kleinasien. Hedwigia 77: 15–70.

    Google Scholar 

  • Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of Central Europe. Hydrobiologia 138: 1–7.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson′s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–8.

    Article  Google Scholar 

  • Stoyneva, M. P., E. Ingolič, W. Koefler & W. Vyverman, 2008. Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika, Africa. Biologia (Bratislava) 63: 795–801.

    Google Scholar 

  • Thomas, C. D., 1979. The birds of a ranch in the Venezuelan Ilanos. In Eisenberg, J. F. (ed.), Vertebrate Ecology in the Northern Neotropics. Smithsonian Institution, Washington: 213–232.

    Google Scholar 

  • Tilman, P., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.

    Google Scholar 

  • Usher, M. B., 1986. Wildlife conservation evaluation: attributes, criteria and values. In Usher, M. B. (ed.), Wildlife Conservation Evaluation. Chapman & Hall, London: 3–44.

    Google Scholar 

  • Van der Maar, E., 1980. Vegetation dynamics: patterns in time and space. Plant Ecology 77: 7–19.

    Google Scholar 

  • Watanabe, M., 1985. Phytoplankton studies of Lake Kasumigaura (2). On some rare or interesting algae. Bulletin of the Natural Science Museum Tokyo, Series B 11(44): 137–142.

    Google Scholar 

  • Zohary, T., J. Padisák & L. Naselli-Flores, 2010. Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–269.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Phytoplankton studies on Lake Stechlin were supported by the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (Berlin/Stechlin-Neuglobsow, Germany). We thank Mr. Roman Degebrodt, Ms. Monika Papke and Mr. Michael Sachtleben for the field and laboratory assistance. Data analyses were supported by the Hungarian National Science Foundation (OTKA Nr. K 75552). We are extremely grateful for the helpful suggestions of the referees and the improvements they enabled us to make to our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Padisák.

Additional information

Guest editors: L. Naselli-Flores & G. Rossetti / Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padisák, J., Hajnal, É., Krienitz, L. et al. Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653, 45–64 (2010). https://doi.org/10.1007/s10750-010-0344-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0344-2

Keywords

Navigation