, Volume 831, Issue 1, pp 71–85 | Cite as

Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir

  • Luciane Oliveira CrossettiEmail author
  • Denise de Campos Bicudo
  • Luis Mauricio Bini
  • Renato Bolson Dala-Corte
  • Carla Ferragut
  • Carlos Eduardo de Mattos Bicudo


This study explored the interactions of phytoplankton species during the invasion of Ceratium furcoides and the environmental variables that contributed to its establishment and ecological success in a shallow eutrophic reservoir (Garças Reservoir, southeast Brazil), which has been monitored monthly for 20 years (1997–2017). The Ceratium furcoides invasion in September 2014 was preceded by disturbance events (macrophyte removal and a historical drought period), which disrupted the dominance of cyanobacteria by modifying resource availability (high water transparency and soluble reactive phosphorus concentrations) and recruiting other species. Ceratium blooms at the water surface were preceded by high abundance near the bottom, suggesting the importance of the propagule bank. However, the pattern of Ceratium-Microcystis coexistence that is usually recorded in temperate lakes was not observed. Instead, Ceratium replaced Cylindrospermopsis raciborskii in mixing periods with high light and nitrogen availabilities, significantly influencing the abundance of Trachelomonas spp. Flagellated forms became dominant in the Garças Reservoir, due to the higher water transparency and relatively lower water-column stability, and alternative states between Ceratium-Trachelomonas in mixing periods and Microcystis-Cryptomonas in stratified periods have been repeated. Since then, cyanobacterial dominance ceased, and the “skillful” Ceratium apparently has come to stay, influencing interactions among phytoplankton species.


Biotic interaction Phosphorus Water transparency Flagellates 



The authors are indebted to FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo and to CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico for providing several funds and grants over these years. DCB and CEMB thank CNPq (Conselho Nacional de Desenvolvimento Científico) for Research Fellowships (310404/2016-9 and 303876/2004-2). We are profoundly grateful for the valuable support of undergraduate and graduate students, as well as the technicians for their continuous support in the field and the laboratory over these many years. We also thank Yukio Hayashi da Silva for improving the illustration of the study area.


  1. Almanza, V., C. E. M. Bicudo, O. Parra & R. Urrutia, 2016. Características morfológicas y limnológicas de las floraciones de Ceratium furcoides (Dinophyta) en un lago somero de Chile Central. Limnetica 35(1): 253–268.Google Scholar
  2. Becker, V., L. S. Cardoso & V. L. M. Huszar, 2009. Diel variation of phytoplankton functional groups in a subtropical reservoir in southern Brazil, during an autumnal stratification period. Aquatic Ecology 43: 371–381.CrossRefGoogle Scholar
  3. Bicudo, C. E. M., C. F. Carmo, D. C. Bicudo, A. C. S. Pião, C. M. Santos & M. R. M. Lopes, 2002. Morfologia e morfometria de três reservatórios do PEFI. In Bicudo, D. C., M. C. Forti & C. E. M. Bicudo (eds), Parque Estadual das Fontes do Ipiranga (PEFI): Unidade de Conservação que Resiste à Urbanização de São Paulo. Editora Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo: 143–160.Google Scholar
  4. Bicudo, D. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, C. E. M. Bicudo & T. Araújo-Jesus, 2007. Undesirable side-effects of water hyacinth control in a shallow tropical Reservoir. Freshwater Biology 51: 1120–1133.CrossRefGoogle Scholar
  5. Borics, G., G. Várbíró & J. Padisák, 2013. Disturbance and stress: different meanings in ecological dynamics? Hydrobiologia 711: 1–7.CrossRefGoogle Scholar
  6. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.Google Scholar
  7. Campanelli, J., J. G. Tundisi, D. S. Abe, C. Sidagis-Galli & T. Matsumura-Tundisi, 2017. Record of the occurrence of dinoflagellate Ceratium furcoides in a fish farming lake located in the countryside of São Carlos (SP, Brazil). Brazilian Journal of Biology 77(2): 426–427.CrossRefGoogle Scholar
  8. Cassol, A. P. V., W. Pereira Filho, M. A. Oliveira, A. L. Domingues, F. S. Correa & G. A. Buriol, 2014. First record of a bloom of the invasive species Ceratium furcoides (F. S. Levander) Langhans 1925 in Rio Grande do Sul state, Brazil. Brazilian Journal of Biology 74(2): 515–517.CrossRefGoogle Scholar
  9. Cavalcante, K. P., L. S. Cardoso, R. Sussella & V. Becker, 2016. Towards a comprehension of Ceratium (Dinophyceae) invasion in Brazilian freshwaters: autecology of C. furcoides in subtropical reservoirs. Hydrobiologia 771: 265–280.CrossRefGoogle Scholar
  10. Cole, G., 1983. Textbook of Limnology, 3rd ed. The C.V. Mosby Co., London.Google Scholar
  11. Conti, J. B. & S. A. Furlan, 2003. Geoecologia: o clima, os solos e a biota. In Ross, J. L. (ed.), Geografia do Brasil. Editora da Universidade de São Paulo, São Paulo: 67–207.Google Scholar
  12. Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invisibility. Journal of Ecology 88(3): 528–534.CrossRefGoogle Scholar
  13. De Bernardi, R., 1981. Biotic interactions in freshwater and effects on community structure. Bolletino di Zoologia 48: 353–371.CrossRefGoogle Scholar
  14. Dokulil, M. & K. Teubner, 2003. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes: do they occur? Hydrobiologia 502: 65–72.CrossRefGoogle Scholar
  15. Donagh, M. E. M., M. A. Casco & M. C. Claps, 2005. Colonization of a Neotropical Reservoir (Córdoba, Argentina) by Ceratium hirundinella (O. F. Müller) Bergh. Annales de Limnologie—International. Journal of Limnology 41(4): 291–299.CrossRefGoogle Scholar
  16. Gil, C. B., J. J. R. Restrepo, A. Boltovskoy & A. Vallejo, 2012. Spatial and temporal change characterization of Ceratium furcoides (Dinophyta) in the equatorial reservoir Riogrande 2. Colombia. Acta Limnologica Brasiliensia 24(2): 207–219.CrossRefGoogle Scholar
  17. Golterman, H. L. & R. S. Clymo, 1971. Methods for Chemical Analysis of Freshwaters. Blackwell Scientific Publications, Oxford and Edinburgh.Google Scholar
  18. Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Chemical Analysis of Freshwaters. Blackwell Scientific Publications, Oxford.Google Scholar
  19. Grace, J. B., S. M. Scheiner, & D. R. Schoolmaster Jr, 2015. Structural equation modeling: building and evaluating causal models. In Fox, G. A., S. Negrete-Yanlelevich & V. J. Sosa (eds), Ecological statistics: contemporary theory and application. Oxford University Press, Oxford: 168–199.CrossRefGoogle Scholar
  20. Hillebrand, H., D. Dürseken, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  21. Hutchinson, G. E., 1961. The paradox of the plankton. American Naturalist 95(882): 137–145.CrossRefGoogle Scholar
  22. Jati, S. A., L. C. Rodrigues, J. C. Bortolini, A. C. M. Paula, G. A. Moresco, L. M. Reis, B. F. Zanco & S. Train, 2014. First record of the occurrence of Ceratium furcoides (Levander) Langhans (Dinophyceae) in the Upper Paraná River Floodplain (PR/MS) Brazil. Brazilian Journal of Biology 74(3): S235–S236.CrossRefGoogle Scholar
  23. Kasprzak, P., T. Shatwell, M. O. Gessner, T. Gonsiorczyk, G. Krillin, G. Selmeczy & J. Padisák, 2017. Extreme weather event triggers cascade towards extreme turbidity in a clear-water lake. Ecosystems. Scholar
  24. Korneva, L. G., 2014. Invasions of alien species of planktonic microalgae into the fresh waters of Holarctic (review). Russian Journal of Biological Invasions 5(2): 65–81.CrossRefGoogle Scholar
  25. Krivtsov, V., E. G. Bellinger & D. C. Sigee, 2005. Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquatic Ecology 39: 123–134.CrossRefGoogle Scholar
  26. Lefcheck, J. S., 2016. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7(5): 573–579.CrossRefGoogle Scholar
  27. Legendre, P. & L. F. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  28. Lewis Jr., W. M., 1983. A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences 40: 1779–1787.CrossRefGoogle Scholar
  29. Lindström, K., 1992. Ceratium in Lake Erken: vertical distribution, migration and form variation. Nordic Journal of Botany 12: 541–556.CrossRefGoogle Scholar
  30. Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Titus Wilson & Son Ltd., Kendall.Google Scholar
  31. Marengo, J. A., C. A. Nobre, M. E. Seluchi, A. Cuartas, L. M. Alves, E. M. Mendiondo, G. Obregón & G. Sampaio, 2015. A seca e a crise hídrica de 2014–2015 em São Paulo. Revista USP 106: 31–44.CrossRefGoogle Scholar
  32. Matsumura-Tundisi, T., J. G. Tundisi, A. P. Luzia & R. M. Degani, 2010. Occurrence of Ceratium furcoides (Levander) Langhans 1925 bloom at the Billings Reservoir, São Paulo State, Brazil. Brazilian Journal of Biology 70: 825–829.CrossRefGoogle Scholar
  33. McCune, B., M. J. Mefford, 2011. PC-ORD Multivariate Analysis of Ecological Data. Version 6.0 MjM Software. Gleneden Beach, Oregon.Google Scholar
  34. Meichitry de Zaburlín, N., A. Boltovskoy, C. C. Rojas & R. M. Rodriguez, 2014. Primer registro del dinoflagelado invasor Ceratium furcoides (Levander) Langhans 1925 en la Argentina y su distribución en el área de influencia del Embalse Yacyretá (río Paraná, Argentina-Paraguay). Limnetica 33: 153–160.Google Scholar
  35. Meichitry de Zaburlín, N., E. Vogler, M. J. Molina & V. M. Llano, 2016. Potential distribution of the invasive freshwater dinoflagellate Ceratium furcoides (Levander) Langhans (Dinophyta) in South America. Journal of Phycology 52: 200–208.CrossRefGoogle Scholar
  36. Morales, E. A., 2016. Floración de Ceratium furcoides (Levander) Langhans (Dinoflagellata, Dinophyceae) en la represa de La Angostura, Cochabamba,Bolivia. Acta Nova 7(4): 389–398.Google Scholar
  37. Moreira, R. A., O. Rocha, R. M. Santos, R. Laudares-Silva, E. S. Dias & E. M. Eskinazi-Sant’Anna, 2015. First record of Ceratium furcoides (Dinophyta), an invasive species, in a temporary high-altitude lake in the Iron Quadrangle (MG, Southeast Brazil). Brazilian Journal of Biology 75(1): 98–103.CrossRefGoogle Scholar
  38. Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis eco-morphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.CrossRefGoogle Scholar
  39. Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.CrossRefGoogle Scholar
  40. Nishimura, P. Y., M. P. Pompêo & V. Moschini-Carlos, 2015. Invasive dinoflagellate Ceratium furcoides (Levander) Langhans in two linked tropical reservoirs. In Pompêo, M., V. Moschini-Carlos, P. Y. Nishimura, S. C. Silva & J. C. L. Doval (eds), Ecologia de reservatórios e interfaces. Instituto de Biociências da Universidade de São Paulo, São Paulo: 132–142.Google Scholar
  41. Oliveira, H. S. B., A. N. Moura & M. K. Cordeiro-Araújo, 2011. First record of Ceratium Schrank, 1973 (Dinophyceae, Ceratiaceae) in freshwater ecosystems in the semiarid region of Brazil. Check List 7: 626–628.CrossRefGoogle Scholar
  42. Padisák, J., 1985. Population dynamics of the dinoflagellate Ceratium hirundinella in the largest shallow lake of Central Europe, Lake Balaton, Hungary. Freshwater Biology 15: 43–52.CrossRefGoogle Scholar
  43. Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie/Suppl 107: 563–593.Google Scholar
  44. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  45. Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653: 45–67.CrossRefGoogle Scholar
  46. Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton—traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27.CrossRefGoogle Scholar
  47. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  48. Pérez-Martínez, C. & P. Sánchez-Castillo, 2002. Winter dominance of Ceratium hirundinella in a southern north-temperate reservoir. Journal of Plankton Research 24: 89–96.CrossRefGoogle Scholar
  49. Pinheiro, J, D. Bates, S. DebRoy, D. Sarkar, D. & R Core Team, 2017. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131 (
  50. Pollingher, U., 1988. Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 134–174.Google Scholar
  51. R Core Team, 2017. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  52. Rengefors, K., S. Gustafsson & A. Ståhl-Delbanco, 2004. Factors regulating the recruitment of cyanobacterial and eukaryotic phytoplankton from littoral and profundal sediments. Aquatic Microbial Ecology 36: 213–226.CrossRefGoogle Scholar
  53. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  54. Reynolds, C. S., 1996. Phosphorus recycling in lakes: evidence from large enclosures for the importance of shallow sediments. Freshwater Biology 35: 623–645.CrossRefGoogle Scholar
  55. Reynolds, C. S., 1997. Vegetation in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.), Excellence in Ecology. Ecology Institute, Oldendorf/Luhe.Google Scholar
  56. Reynolds, C. S., 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  57. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  58. Santos-Wisniewski, M. J., L. C. Silva, I. C. Leone, R. Laudares-Silva & O. Rocha, 2007. First record of the occurrence of Ceratium furcoides (Levander) Langhans 1925, and invasive species in the hydroelectricity power plant Furnas Reservoir, MG, Brazil. Brazilian Journal of Biology 67(4): 791–793.CrossRefGoogle Scholar
  59. Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.CrossRefGoogle Scholar
  60. Selmeczy, G. B., K. Tapolczai, L. Krienitz, P. Casper & J. Padisák, 2016. Spatial- and niche segregation of DCM forming cyanobacteria in Lake Stechlin (Germany). Hydrobiologia 764: 229–240.CrossRefGoogle Scholar
  61. Shipley, B., 2013. The AIC model selection method applied to path analytic models compared using a d-separation tests. Ecology 94: 560–564.CrossRefGoogle Scholar
  62. Silva, L. C., I. C. Leone, M. J. Santos-Wisniewski, A. C. Peret & O. Rocha, 2012. Invasion of the dinoflagellate Ceratium furcoides (Levander) Langhans 1925 at tropical reservoir and its relation to environmental variables. Biota Neotropica 12: 1–8.Google Scholar
  63. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.CrossRefGoogle Scholar
  64. Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson´s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–8.CrossRefGoogle Scholar
  65. Soriano, E., L. R. Londe, L. T. Di Gregorio, M. P. Coutinho & L. B. L. Santos, 2016. Water crisis in São Paulo evaluated under the disaster’s point of view. Ambiente & Sociedade 19(41): 21–42.CrossRefGoogle Scholar
  66. Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55(Suppl. 1): 152–174.CrossRefGoogle Scholar
  67. Strickland, J. D. H. & T. R. Parsons, 1960. A manual of seawater analysis. Fisheries Research Board of Canada Bulletin 125: 1–185.Google Scholar
  68. Tilman, D., M. Mattson & S. Langer, 1981. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnology and Oceanography 26: 1020–1033.CrossRefGoogle Scholar
  69. Utermöhl, H. 1958. Zur Vervolkomnung der quantitative Phytoplankton-Methodik Mitteilungen der internationale Vereinigung für theoretische und angewandte Limnologie 9: 1–38.Google Scholar
  70. Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorous in natural waters. Marine Chemistry 10: 109–122.CrossRefGoogle Scholar
  71. Vidaković, D., J. Krizmanić, G. Subakov-Simić & V. Karadžić, 2016. Distribution of invasive species Actinocyclus normanii (Hemidiscaceae, Bacillariophyta) in Serbia. Studia Botanica Hungarica 47(2): 201–212.CrossRefGoogle Scholar
  72. Winder, M. & D. A. Hunter, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ecologia, Instituto de BiociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de EcologiaInstituto de BotânicaSão PauloBrazil
  3. 3.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  4. 4.Programa de Pós-Graduação em Biodiversidade AnimalUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations