Skip to main content
Log in

Mapping 45S and 5S ribosomal genes in chromosomes of Anostomidae fish species (Ostariophysi, Characiformes) from different Amazonian water types

  • ADAPTA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The fish from the family Anostomidae represent one of the most important groups of freshwater ichthyofauna from South America, with species of high economical value. The migratory characteristic of some species, through the several Amazonian environments, takes them into waters with different physico-chemical characteristics. Cytogenetic studies on the Anostomidae demonstrate that these fishes have a conserved diploid number and karyotype macrostructure. So, to verify if this conservation occurs also in the genomic level, the current study aimed at a chromosomal comparative physical mapping, using 45S and 5S rDNA, of seven species of anostomids: Leporinus fasciatus, L. agassizi, L. friderici, L. trifasciatus, Rhytiodus macrolepis, Laemolyta taeniata, and Schizodon fasciatus, collected in different Amazonian environments. The results obtained corroborate the conservation of the karyotype macrostructure. However, significant differences were found in the distribution of heterochromatin and on the pair bearing the nucleolus organizer region. The staining of 45S and 5S rDNA by FISH highlighted, for four of the seven species, more than one chromosome pair bearing the site 45S. The 5S rDNA, although present in only one chromosome pair, varied in its chromosome and karyotype position. Thus, although the Anostomidae family has a conserved chromosomic macrostructure the use of molecular techniques revealed the presence of chromosomic translocation during the evolution of these fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar, C. T. & P. M. Galetti Jr., 2008. Chromosome mapping of 5S rRNA genes differentiates Brazilian populations of Leporellus vittatus (Anostomidae, Characiformes). Genetics and Molecular Biology 31(1): 188–194.

    Article  Google Scholar 

  • Alves-Costa, F. A., A. P. Wasko, C. Oliveira, F. Foresti & C. Martins, 2006. Genomic organization and evolution of the 5S ribosomal DNA in Tilapiini fishes. Genetica 127: 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Barros, C. L., U. Santos, M. B. Cioffi & J. Dergam, 2015. Evolutionary divergence among Oligosarcus spp. (Ostariophysi, Characidae) from the São Francisco and Doce River Basins: Oligosarcus solitarius Menezes, 1987 shows the highest rates of chromosomal evolution in the Veotropical region. Zebrafish 12: 102–110.

    Article  PubMed  Google Scholar 

  • Bertollo, L. A. C., C. S. Takahashi & O. Moreira-Filho, 1978. Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erytrinidae). Revista Brasileira de Genética 1: 103–120.

    Google Scholar 

  • Born, G. G. & L. A. C. Bertollo, 2000. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus with a polymorphic NOR bearing X chromosome. Chromosome Research 8: 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Britski, H. A. & J. O. Birindelli, 2013. A new species of Leporinus agassiz (Characiformes: Anostomidae) from the rio Tocantins, Brazil. Neotropical Ichthyology 11(1): 25–32.

    Article  Google Scholar 

  • Brooks, L. D., 1988. The evolution of recombination rates. In Michod, R. E. & B. R. Levin (eds), The Evolution of Sex. Sianauer, Sunderland, MA: 87–105.

    Google Scholar 

  • Cabral-de-Mello, D. C., S. G. Oliveira, R. C. Moura & C. Martins, 2011. Chromosomal organization of the 18S and 5S rRNA and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genetics 12: 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputo, V., M. Giovannotti, P. N. Cerioni, A. Splendiani, J. Tagliavini & E. Olmo, 2011. Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): conventional and FISH analysis. Chromosome Research 19: 481–491.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, N. D. M., M. C. Gross, C. H. Schneider, M. L. Terencio, J. Zuanon & E. E. Feldberg, 2012. Cytogenetics of Synbranchiformes: a comparative analysis of two Synbranchus Bloch, 1795 species from the Amazon. Genetica 140: 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Centofante, L., L. A. C. Bertollo & O. Moreira-Filho, 2002. A ZZ/ZW sex chromosome system in a new species of the genus Parodon (Pisces, Parodontidae). Caryologia 55: 139–150.

    Article  Google Scholar 

  • Charlesworth, B., P. Snegowski & W. Stephan, 1994. The evolution dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Diniz, D., A. Laudicina & L. A. C. Bertollo, 2009. Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae). Genetics and Molecular Biology 32(1): 37–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschmeyer, W. N. & J. D. Fong, 2015. Species by family/subfamily. [Available on internet at http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp]. Accessed on 2 July 2015.

  • Feldberg, E., L. A. C. Bertollo, L. F. Almeida-Toledo, F. Foresti & O. Moreira-Filho, 1987. Biological aspects of Amazonian fishes. IX. Cytogenetic studies in two species of the genus Semaprochilodus (Pisces, Prochilodontidae). Genome 29: 1–4.

    Article  Google Scholar 

  • Ferreira, E. J. G., 1992. A ictiofauna do rio Trombetas na área de influência da futura usina hidrelétrica de Cachoeira Porteira, Pará. Tese de Doutorado, FUA/INPA, Manaus: 162 pp.

  • Ferreira, I. A., C. Oliveira, P. C. Venere, P. M. Galetti & C. Martins, 2007. 5S rDNA variation and its phylogenetic inference in the genus Leporinus (Characiformes: Anostomidae). Genetica 129: 253–257.

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara, A., S. Abe, E. Yamaha, F. Yamazaki & M. C. Yoshida, 1998. Chromosomal localization and heterochromatin association of ribosomal RNA genes loci and silver stained nucleolar organizer regions in salmonid fishes. Chromosome Research 6: 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Galetti, P. M., A. C. G. Cesar & P. C. Venere, 1991a. Heterochromatin and NORs variability in Leporinus fish (Anostomidae, Characiformes). Caryologia 44: 287–292.

    Article  Google Scholar 

  • Galetti, P. M., C. A. Mestriner, P. C. Venere & F. Foresti, 1991b. Heterochromatin and karyotype reorganization in fish of the family Anostomidae (Characiformes). Cytogenetic Cell Genetics 56: 116–121.

    Article  Google Scholar 

  • Galetti, P. M., N. R. W. Lima & P. C. Venere, 1995a. A monophyletic ZW chromosome system in Leporinus (Anostomidae, Characiformes). Cytologia 60: 375–382.

    Article  Google Scholar 

  • Galetti, P. M., C. A. Mestriner, P. J. Monaco & E. M. Rasch, 1995b. Post-zygotic modification and intra- and inter-individual nucleolar organizing region variations in fish: report of a case involving Leporinus friderici. Chromosome Research 3: 285–290.

    Article  CAS  PubMed  Google Scholar 

  • Garavello, J. C. & H. A. Britski, 2003. Family Anostomidae (Headstanders). In Reis, R. E., S. O. Kullander & C. J. Ferraris Jr. (eds), Checklist of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre: 71–86.

    Google Scholar 

  • Goulding, M., R. Barthem & E. J. Ferreira, 2003. The Negro and the Trombetas: black and clear waters from ancient lands. In: The Smithsonian Atlas of the Amazon. Smithsonian Institution Press, Washington, DC.

  • Gregory, T. R., 2005. Genome size evolution in animals. In Gregory, T. R. (ed.), The Evolution of the Genome. Elsevier, San Diego, CA: 3–87.

    Chapter  Google Scholar 

  • Gross, M. C., C. H. Schneider, G. Valente, J. I. R. Porto, C. Martins & E. Feldberg, 2010. Comparative cytogenetic analysis of the genus Symphysodon (Discus Fishes, Cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenetics and Genome Research 1: 1–11.

    Google Scholar 

  • Guerra, M., 2004. FISH: Conceitos e Aplicações na Citogenética. Sociedade Brasileira de Genética, Ribeirão Preto.

    Google Scholar 

  • Haffer, J., 1982. General aspects of the refuge theory. In Prance, G. T. (ed.), Biological Diversification in the Tropics. Columbia University Press, New York: 6–26.

    Google Scholar 

  • Hatanaka, T., F. Henrique-Silva & P. M. Galetti, 2002. A polymorphic, telomeric-like sequence microsatellite in the Neotropical fish Prochilodus. Cytogenetics and Genome Research 98: 308–310.

    Article  CAS  PubMed  Google Scholar 

  • Hillis, D. M. & M. T. Dixon, 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology 66: 411–453.

    Article  CAS  PubMed  Google Scholar 

  • Howell, W. M. & D. A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.

    Article  CAS  PubMed  Google Scholar 

  • Ijdo, J. W., R. A. Wells, A. Baldini & S. T. Reeders, 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Research 19: 4780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junk, W. J. & K. Furch, 1993. A general review of tropical South American floodplains. Wetlands Ecology and Management 4: 231–238.

    Google Scholar 

  • Junk, W. J. & M. T. Z. Piedade, 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31: 623–640.

    Article  Google Scholar 

  • Jurka, J., W. Bao & K. K. Kojima, 2011. Families of transposable elements, population structure and the origin of species. Biology Direct 6: 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krichanã, S. R. L., 1999. Contribuição ao estudo citogenético da família Anostomidae (Pisces, Characiformes) na região Amazônica. Dissertação de mestrado, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos: 80 pp.

  • Krinski, D. & C. S. Miyazawa, 2013. Análises cariotípicas em Leporellus vittatus e Leporinus striatus (Teleostei, Characiformes, Anostomidae) da Bacia do Alto Paraguai, Mato Grosso. Brasil. Estudo Biology 35(85): 113–120.

    Article  Google Scholar 

  • Levan, A., K. Fredga & A. A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.

    Article  Google Scholar 

  • Long, E. O. & I. B. Dawid, 1980. Repeated genes in eukaryotes. Annu Rev Biochem 49: 727–764.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, M., D. S. L. Abel, O. Moreira-Filho, 2005. Conserved 5S and variable 45S rDNA chromosomal localization revealed by FISH in Astyanax scabripinnis (Pisces, Characidae). Genetica 123: 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Margarido, V. P. & P. M. Galetti, 2000. Amplification of a GC-rich heterochromatin in the freshwater fish Leporinus desmotes (Characiformes, Anostomidae). Genetics Molecular Biology 23: 569–573.

    Article  CAS  Google Scholar 

  • Marreta, M. E., F. L. C. Faldoni & P. P. Parise-Maltempi, 2012. Cytogenetic mapping of the W chromosome in the genus Leporinus (Teleostei, Anostomidae) using a highly repetitive DNA sequence. Journal of Fish Biology 80: 630–637.

    Article  CAS  PubMed  Google Scholar 

  • Martins, C., 2007. Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In Pisano, E., C. Ozouf-Costaz, F. Foresti & B. G. Kapoor (eds), Fish Cytogenetics. Science Publisher, Inc, Enfield: 421–453.

    Google Scholar 

  • Martins, C. & P. M. Galetti, 1998. Chromosome diversity in Neotropical fishes: NOR studies. Italian Journal of Zoology 65: 53–56.

    Article  Google Scholar 

  • Martins, C. & P. M. Galetti, 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Research 7: 363–367.

    Article  CAS  PubMed  Google Scholar 

  • Martins, C. & P. M. Galetti, 2000. Conservative distribution of 5S rDNA loci in Schizodon (Pisces, Anostomidae) chromosomes. Chromosome Research 8: 353–355.

    Article  CAS  Google Scholar 

  • Martins, C. & P. M. Galetti, 2001a. Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44: 903–910.

    Article  CAS  PubMed  Google Scholar 

  • Martins, C. & P. M. Galetti, 2001b. Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes? Genetica 111: 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Martins, C. & A. P. Wasko, 2004. Organization and evolution of 5S ribosomal DNA in the fish genome. In Williams, C. L. (ed.), Focus on Genome Research. Nova Science Publishers, New York: 289–318.

    Google Scholar 

  • Martins, C., A. P. Wasko, C. Oliveira & J. M. Wright, 2000. Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the tilapiine cichlid fish, Oreochromis niloticus. Hereditas 133: 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Martins, C., D. C. Cabral-de-Mello, G. T. Valente, J. Mazzuchelli, S. G. Oliveira & D. Pinhal, 2011. Animal Genomes Under the Focus of Cytogenetics, 1st edn. Nova Science Publisher, Hauppauge: 160 pp.

  • Meyne, J., R. L. Ratliff & R. K. Moyzis, 1989. Conservation of the human telomere sequence TTAGGGn among vertebrates. Proceedings of the National Academy of Sciences of the United States of America 86: 7049–7053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina, W. F. & P. M. Galetti, 2007. Early replication banding in Leporinus species (Osteichthyes, Characiformes) bearing differentiated sex chromosomes (ZW). Genetica 130: 153–160.

    Article  PubMed  Google Scholar 

  • Moraes-Neto, A., M. Silva, D. A. Motos, M. R. Vicari, M. C. Almeida, M. J. Collares-Pereira & R. F. Artoni, 2011. Karyotype variability in neotropical catfishes of the family Pimelodidae (Teleostei, Siluriforme). Neotropical Ichthyology 9: 97–105.

    Article  Google Scholar 

  • Muller, H. J., 1964. The relation of recombination to mutational advance. Mutation Research 1: 2–9.

    Article  Google Scholar 

  • Nagamachi, C. Y., J. C. Pieczarka, P. C. M. O’Brien, J. Á. Pinto, S. M. Malcher, A. L. Perreira, J. D. Rissino, A. C. Mendes-Oliveira, R. V. Rossi & M. A. Ferguson-Smith, 2013. Fish with whole chromosome and telomeric probes demonstrates huge karyotypic reorganization with ITS between two species of Oryzomyini langguthi karyotype. Chromosome Research 21: 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, S., 1967. Sex Chromosomes and Sex-Linked Genes. Springer, Berlin.

    Book  Google Scholar 

  • Oliver, K. R. & W. K. Greene, 2011. Mobile DNA and the TE-Thrust Hypothesis: supporting evidence from the primates. Mobile DNA 2: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parise-Maltempi, P. P., C. Martins, C. Oliveira & F. Foresti, 2007. Identification of a new repetitive element in the sex chromosomes of Leporinus elongatus (Teleostei: Characiformes: Anostomidae): new insights into the sex chromosomes of Leporinus. Cytogenetic and Genome Research 116: 218–223.

    Article  CAS  PubMed  Google Scholar 

  • Parise-Maltempi, P. P., L. S. Edson, R. Willem, D. Frances, C. M. O’Brien, T. Vladimir Patricia & A. F. S. Malcolm, 2013. Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting. BMC Genetics 14: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pendás, A. M., P. Móran, L. P. Freije & E. Garcia-Vásquez, 1994. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenetic Cell Genetic 67: 31–36.

    Article  Google Scholar 

  • Pereira, M. A., C. Oliveira, F. Foresti & E. L. Maistro, 2002. Cytogenetic and nuclear DNA content analysis in Anostomidae fishes from the Sapucaí River, Minas Gerais State, Brazil. Cytologia 68: 289–296.

    Article  Google Scholar 

  • Pinkel, D., T. Straume & J. W. Gray, 1986. Cytogenetic analysis using quantitative, high- sensitivity, fluorescence hybridization. Proceedings of the Natural Academy of Science of United States of America 83: 2934–2938.

    Article  CAS  Google Scholar 

  • Poltronieri, J., V. Marquioni, L. A. C. Bertollo, E. Kejnovsky, W. F. Molina, T. Liehr & M. B. Cioffi, 2013. Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenetic and Genome Research 142: 40–45.

    Article  PubMed  Google Scholar 

  • Renno, J. F., P. Berreb, T. Boujard & R. Guyomard, 1990. Intraspecific genetic differentiation of Leporinus friderici. (Anostomidae, Pisces) in French Guiana and Brazil: a genetic approach to the refuge theory. Journal of Fish Biology 36: 85–95.

    Article  Google Scholar 

  • Sambrook, J. & D. W. Russell, 2001. Molecular Cloning: A Laboratory Manual, Vol. I. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Santos, G. M., 1991. Pesca e ecologia dos peixes de Rondônia. Tese de Doutorado, INPA/FUA, Manaus, AM: 213 pp.

  • Santos, G. M. & M. Jégu, 1989. Inventário taxonômico e redescrição das espécies de anostomídeos (Characiformes, Anostomidae) do baixo rio Tocantins, PA, Brasil. Acta Amazonica 19: 159–213.

    Article  Google Scholar 

  • Santos, G. M. & M. Jégu, 1996. Inventário Taxonômico dos Anostomídeos (Pisces, Anostomidae) da Bacia do Rio Uatumã – AM, Brasil, com descrição de duas Espécies Novas. Acta Amazonica 26: 151–184.

    Article  Google Scholar 

  • Santos, G. M. & J. Zuanon, 2008. Leporinus amazonicus, a new anostomidae species from the Amazon lowlands, Brazil (Osteichthyes: Characiformes). Zootaxa 1815: 35–42.

    Google Scholar 

  • Schemberger, M. O., E. Bellafronte, V. Nogaroto, M. C. Almeida, G. S. Schuhli, R. F. Artoni, O. Moreira-Filho & M. R. Vicari, 2011. Differentiation of repetitive DNA sites and 98 sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes). Genetica 139: 1499–1508.

    Article  PubMed  Google Scholar 

  • Schlade-Bartusiak, K., T. Costa, A. M. Summers, M. J. Nowaczyk & D. W. Cox, 2005. Fish-Mapping of telomeric 14q32 deletions: search for the cause of seizures. American Journal of Medical Genetics 183A: 218–224.

    Article  Google Scholar 

  • Silva, E. L., S. B. Rafael & P. P. Parise-Maltempi, 2012. Chromosome mapping of repetitive sequences in Anostomidae species: implications for genomic and sex chromosome evolution. Molecular Cytogenetics 5: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sioli, H., 1950. Das Wasser im Amazonasgebiet. Forsch. Fortschr. In Lowe-McConnel, R. H. (ed.), Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo: 345–373.

    Google Scholar 

  • Sliwinska-Jewsiewicka, A., M. Kucinski, L. Kirtiklis, S. Dobosz, K. Ocalewicz & M. Jankun, 2013. Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814). Genetica 143: 425–432.

    Article  Google Scholar 

  • Splendore de Borba R., E. Lourenço da Silva & P. P. Parise-Maltempi, 2013. Chromosome mapping of retrotransposable elements Rex1 and Rex3 in Leporinus Spix, 1829 species (Characiformes: Anostomidae) and its relationships among heterochromatic segments and W sex chromosome. Mobile Genetic Elements 3: e27460.

  • Steinemann, S. & M. Steinemann, 2005. Retroelements: tools for sex chromosome evolution. Cytogenetic and Genome Research 110: 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, A. T., 1972. A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75: 304–306.

    Article  CAS  PubMed  Google Scholar 

  • Terencio, M. L., C. H. Schneider, M. C. Gross, M. R. Vicari & E. Feldberg, 2012. Stable karyotypes: a general rule for the fish of the family Prochilodontidae? Hydrobiologia 686: 147–156.

    Article  CAS  Google Scholar 

  • Vicari, M. R., M. C. Almeida, L. A. C. Bertollo, O. Moreira-Filho & R. F. Artoni, 2006. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA in the fish Prochilodus lineatus (Characiformes, Prochilodontidae). Genetics and Molecular Biology 4: 621–625.

    Article  Google Scholar 

  • Vicente, V. E., C. M. Jesus & O. Moreira-Filho, 2001. Chromosomal localization of 5S and 18S rRNA genes in three Parodon species (Pisces, Parodontidae). Caryologia 54: 365–369.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Jansen A. Zuanon for identifying the specimens. This study was supported by the Brazilian agencies, Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq-LCB scholarship), Instituto Nacional de Pesquisas da Amazônia/Genética, Conservação e Biologia Evolutiva (INPA/GCBEv), Fundação de Amparo a Pesquisas do Estado do Amazonas (PRONEX FAPEAM/CNPq 003/2009), Center for Studies of Adaptation to Environmental Changes in the Amazon (INCT ADAPTA, FAPEAM/CNPq 573976/2008-2), and Edital MCT/CNPq/MEC/CAPES/FNDCT–Ação Transversal/FAPs No. 47/2010 (Rede BioPHAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Caetano de Barros.

Additional information

Guest editors: Adalberto L. Val, Gudrun De Boeck & Sidinei M. Thomaz / Adaptation of Aquatic Biota of the Amazon

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, L.C., Galetti Junior, P.M. & Feldberg, E. Mapping 45S and 5S ribosomal genes in chromosomes of Anostomidae fish species (Ostariophysi, Characiformes) from different Amazonian water types. Hydrobiologia 789, 77–89 (2017). https://doi.org/10.1007/s10750-015-2583-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2583-8

Keywords

Navigation