Skip to main content
Log in

The roles of environmental conditions and spatial factors in controlling stream macroalgal communities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the last three decades, several studies have suggested that the structure of stream macroalgal communities is shaped by local environmental variables, but some recent papers have shown that the relevance of the environment on these communities may be overestimated. Using Partial Redundancy Analysis (pRDA), we analyzed macroalgal communities (considering all macroalgae and Phyla Chlorophyta, Cyanobacteria, and Rhodophyta individually) from 105 streams in southern Brazil to test the hypothesis that the relative contributions of the environment and space on the taxonomic composition of these communities is mainly determined by the biological traits and dispersal mechanisms typical for each group. The pRDA showed that the taxonomic composition of the entire community and green algae were explained by both space and environment, whereas for cyanobacteria, only the environment was significant, and for red algae, only space was significant. These divergences in the relative contribution among algal phyla were consistent with our initial hypothesis and can be ascribed to the differences in the ecological features of each group. Our results also support the idea that the community structure of organisms with low dispersal is influenced more significantly by spatial processes, whereas for organisms with high dispersal the local environmental variables are more influential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Algarte, V. M., L. Rodrigues, V. L. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722: 279–290.

    Article  Google Scholar 

  • Azaele, S., R. Muneepeerakul, A. Maritan, A. Rinaldo & I. Rodriguez-Iturbe, 2009. Predicting spatial similarity of freshwater fish biodiversity. Proceedings of the National Academy of Sciences of the United States of America 106: 7058–7062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Bojorge-García, M., J. Carmona, Y. Beltrán & M. Cartajena, 2010. Temporal and spatial distribution of macroalgal communities of mountain streams in Valle Bravo Basin, central Mexico. Hydrobiologia 641: 159–169.

    Article  Google Scholar 

  • Branco, C. C. Z. & O. Necchi Júnior, 1996. Distribution of stream macroalgae in the eastern Atlantic Rainforest of São Paulo State, sotheastern Brazil. Algological Studies 333: 139–150.

    Google Scholar 

  • Branco, C. C. Z., L. H. Z. Branco, M. O. Moura & F. R. Bertusso, 2005. The succession dynamics of a macroalgal community after a flood disturbance in a tropical stream from São Paulo State, Southeastern Brasil. Brazilian Journal of Botany 28: 267–275.

    Article  Google Scholar 

  • Branco, C. C. Z., R. A. Krupek & C. K. Peres, 2009. Distribution of stream macroalgal communities from the mid-western region of Paraná State, southern Brazil: importance of local-scale variation. Brazilian Archives of Biology and Technology 52: 379–386.

    Article  Google Scholar 

  • Brown, B. L., C. M. Swan, D. A. Auerbach, E. H. Campbell Grant, N. P. Hitt, K. O. Maloney & C. Patrick, 2011. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. Journal of the North American Benthological Society 30: 310–327.

    Article  Google Scholar 

  • Convertino, M., R. Muneepeerakul, S. Azaele, E. Bertuzzo, A. Maritan, A. Rinaldo & I. Rodriguez-Iturbe, 2009. On neutral metacommunity patterns of river basins at different scales of aggregation. Water Resources Research 45: 1–15.

    Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • Coutinho, L. M., 2006. O conceito de bioma. Acta Botanica Brasilica 20: 13–23.

    Article  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Dell’Uomo, A., 1991. Use of benthic macroalgae for monitoring rivers in Italy. In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institut für Botanik, Universität Innsbruck, Innsbruck: 129–138.

    Google Scholar 

  • DeNicola, D. M., K. D. Hoagland & S. C. Roemer, 1992. Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. Journal of the North American Benthological Society 11: 391–404.

    Article  Google Scholar 

  • Drakare, S. & A. Liess, 2010. Local factors control the community composition of cyanobacteria in lakes while heterotrophic bacteria follow a neutral model. Freshwater Biology 55: 2447–2457.

    Article  Google Scholar 

  • Dray, S., P. Legendre & G. Blanchet, 2009. packfor: Forward Selection with permutation (Canoco p.46). R package version 0.0-7/r58. http://R-Forge.R-project.org/projects/sedar/.

  • Fierer, N., J. L. Morse, S. T. Berthrong, E. S. Bernhardt & R. B. Jackson, 2007. Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology 88: 2162–2173.

    Article  PubMed  Google Scholar 

  • Gordon, N. D., T. A. McMahon & B. L. Finlayson, 1992. Stream Hydrology, an Introduction for Ecologists. Wiley, Chichester.

    Google Scholar 

  • Göthe, E., D. G. Angeler & L. Sandin, 2013. Metacommuniy structure in a small boreal stream network. Journal of Animal Ecology 82: 449–458.

    Article  PubMed  Google Scholar 

  • Heino, J. & H. Mykrä, 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.

    Google Scholar 

  • Hepp, L. U. & A. S. Melo, 2013. Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703: 239–246.

    Article  Google Scholar 

  • Hitt, N. P. & P. L. Angermeier, 2011. Fish community and bioassessment response to stream network position. Journal of the North American Benthological Society 30: 296–309.

    Article  Google Scholar 

  • Hu, B. F. & S. L. Xie, 2006. Effect of seasonality on distribution of macroalgae in a stream system (Xinàn Spring) in Shanxi Province, North China. Journal of Integrative Plant Biology 48: 889–896.

    Article  Google Scholar 

  • Kristiansen, J., 1996. Dispersal of freshwater algae – a review. Hydrobiologia 336: 151–157.

    Article  Google Scholar 

  • Landeiro, V. L., L. M. Bini, A. S. Melo, A. M. O. Pes & W. E. Magnusson, 2012. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology 57: 1554–1564.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science, Amsterdam.

    Google Scholar 

  • Legendre, P., D. Borcard, G. Blanchet & S. Dray, 2010. PCNM: PCNM spatial eigenfunction and principal coordinate analyses. R package version 2.1/r82. http://R-Forge.R-project.org/projects/sedar/.

  • Leibold, M. A. M., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter, H. Hillebrand, P. Declerck, A. Flohre, S. Gantner, N. Gülzow, P. Hörtnagl, S. Meier & B. Pecceu, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.

    Article  PubMed  Google Scholar 

  • Muneepeerakul, R., J. S. Weitz, S. A. Levin, A. Rinaldo & I. Rodriguez-Iturbe, 2007. A neutral metapopulation model of biodiversity in river networks. Journal of Theoretical Biology 245: 351–363.

    Article  PubMed  Google Scholar 

  • Muneepeerakul, R., E. Bertuzzo, H. J. Lynch, W. F. Fagan, A. Rinaldo & I. Rodriguez-Iturbe, 2008. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453: 220–222.

    Article  CAS  PubMed  Google Scholar 

  • Nabout, J. C., T. Siqueira, L. M. Bini & I. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 720–726.

    Article  Google Scholar 

  • Necchi Júnior, O., C. C. Z. Branco, R. C. G. Simões & L. H. Z. Branco, 1995. Distribution of stream macroalgae in northwest region of São Paulo State, Southern Brazil. Hydrobiologia 299: 219–230.

    Article  Google Scholar 

  • Necchi Júnior, O., C. C. Z. Branco & L. H. Z. Branco, 2000. Distribution of stream macroalgae in São Paulo State, southeastern Brazil. Algological Studies 97: 43–57.

    Google Scholar 

  • Ng, I. S. Y., C. M. Carr & K. Cottenie, 2009. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619: 133–143.

    Article  Google Scholar 

  • Oksanen, J., F. Blanchet, H. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens & H. Wagner, 2011. vegan: Community Ecology Package. R package version 2.0-0. http://CRAN.R-project.org/package=vegan.

  • Okuda, T., T. Noda, T. Yamamoto, M. Hori & M. Nakaoka, 2010. Contribution of environmental and spatial processes to rocky intertidal metacommunity structure. Acta Oecologica 36: 413–422.

    Article  Google Scholar 

  • Padisák, J., 2004. Phytoplankton. In O’Sullivan, P. E. & C. S. Reinolds (eds), The Lakes Handbook 1. Limnology and Limnetic Ecology. Blackwell Science Ltd., Oxford: 251–308.

    Google Scholar 

  • Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrast between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.

    Article  PubMed  Google Scholar 

  • Patrick, C. J. & C. M. Swan, 2011. Reconstructing the assembly of a stream-insect metacommunity. Journal of the North American Benthological Society 30: 259–272.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Potts, M., 1999. Mechanisms of desiccation tolerance in cyanobacteria. European Journal of Phycology 34: 319–328.

    Article  Google Scholar 

  • R Development Core Team, 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.

  • Schulz, G., T. Siqueira, G. Stefan & F. O. Roque, 2012. Passive and active dispersers respond similarly to environmental and spatial processes: an example from metacommunity dynamics of tree hole invertebrates. Fundamental and Applied Limnology 181: 315–326.

    Article  Google Scholar 

  • Sheath, R. G. & J. M. Burkholder, 1985. Characteristics of softwater streams in Rhode Island. II. Composition and seasonal dynamics of macroalgal communities. Hydrobiologia 140: 183–191.

    Article  Google Scholar 

  • Sheath, R. G. & K. M. Cole, 1992. Biogeography of stream macroalgae in North America. Journal of Phycology 28: 448–460.

    Article  Google Scholar 

  • Sheath, R. G. & J. A. Hambrook, 1990. Freshwater ecology. In Cole, K. M. & R. G. Sheath (eds), Biology of the Red Algae. Cambridge University Press, Cambridge: 423–453.

    Google Scholar 

  • Siqueira, T., L. M. Bini, F. O. Roque, S. R. M. Couceiro, S. Trivinho-Strixino & K. Cottenie, 2012. Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35: 183–192.

    Article  Google Scholar 

  • Soininen, J., R. McDonald & H. Hillebrand, 2007. The distance decay of similarity in ecological communities. Ecography 30: 3–12.

    Article  Google Scholar 

  • Swan, C. M. & B. L. Brown, 2011. Advancing theory of community assembly in spatially structured environments: local vs regional processes in river networks. Journal of the North American Benthological Society 30: 232–234.

    Article  Google Scholar 

  • Verb, R. G. & M. L. Vis, 2001. Macroalgal communities from an acid mine drainage impacted watershed. Aquatic Botany 71: 93–107.

    Article  Google Scholar 

  • Verreydt, D., L. De Meester, E. Decaestecker, M. J. Villena, K. Van Der Gucht, P. Vannormelingen, W. Vyverman & S. A. J. Declerck, 2012. Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities. Ecology Letters 15: 218–226.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to FAPESP for financial support (proc. 2007/52608-1), a doctoral scholarship to AFT (proc. 2010/17563-0) and language revision (proc. 2012/201196-8), to CNPq for a doctoral scholarship to CKP (proc. 141754/2007-9) and research grants to CCZB (proc. 302354/2008-5), LHZB (proc. 301400/2009-1) and PCB (proc. 307577/2011-2). We also thank ICMBio/MMA and the conservation units for granting permission to collect specimens and for providing logistical support during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro C. Z. Branco.

Additional information

Handling editor: Luis Mauricio Bini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branco, C.C.Z., Bispo, P.C., Peres, C.K. et al. The roles of environmental conditions and spatial factors in controlling stream macroalgal communities. Hydrobiologia 732, 123–132 (2014). https://doi.org/10.1007/s10750-014-1852-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1852-2

Keywords

Navigation