Skip to main content
Log in

Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Theoretical development in the field of community ecology needs ground proofing with empirical tests. In addition, these tests need to be continuously updated. Cottenie (2005) linked observed metacommunities to theoretical models based on whether environmental and/or spatial effects in the observed metacommunity significantly explain community structure. However, a species-sorting metacommunity with high dispersal and one with limited dispersal cannot be distinguished in this manner; both produce significant environmental and spatial effects. In the present study, we demonstrate a solution to this problem using a zooplankton rock pool metacommunity in Churchill, Manitoba, sampled in August 2006. We established a hierarchy of metacommunities in the Churchill rock bluff system—a large, across-bluff metacommunity, and small, within-bluff metacommunities. Using this spatial hierarchy, it is possible to determine the zooplankton dispersal capability in the rock bluff system and hence to link the metacommunity to its corresponding model. We found the zooplankton rock bluff system to exhibit limited dispersal, meaning that spatial effects were significant at the across-bluff scale, but depending on the bluff, were significant or insignificant at the within-bluff scale. Environmental effects were significant at both scales. This study demonstrates a novel way to determine dispersal capabilities in species that are cryptic dispersers, and to successfully link observed metacommunities with theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal, A. A., D. D. Ackerly, F. Adler, A. E. Arnold, C. Cáceres, D. F. Doak, E. Post, P. J. Hudson, J. Maron, K. A. Mooney, M. Power, D. Schemske, J. Stachowicz, S. Strauss, M. G. Turner & E. Werner, 2007. Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment 5: 145–152.

    Article  Google Scholar 

  • Bell, T., D. Ager, J. I. Song, J. A. Newman, I. P. Thompson, A. K. Lilley & C. J. van der Gast, 2005. Larger islands house more bacterial taxa. Science 308: 1884.

    Article  PubMed  CAS  Google Scholar 

  • Brendonck, L. & B. J. Riddoch, 1999. Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda). Biological Journal of the Linnean Society 67: 87–95.

    Article  Google Scholar 

  • Caceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.

    Article  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  Google Scholar 

  • Eitam, A., L. Blaustein, K. Van Damme, H. J. Dumont & K. Martens, 2004. Crustacean species richness in temporary pools: relationships with habitat traits. Hydrobiologia 525: 125–130.

    Article  Google Scholar 

  • Ellis, A. M., L. P. Lounibos & M. Holyoak, 2006. Evaluating the long-term metacommunity dynamics of tree hole mosquitoes. Ecology 87: 2582–2590.

    Article  PubMed  Google Scholar 

  • Finlay, B. J. & K. J. Clarke, 1999. Ubiquitous dispersal of microbial species. Nature 400: 828.

    Article  CAS  Google Scholar 

  • Foissner, W., 2006. Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45: 111–136.

    Google Scholar 

  • Frisch, D., E. Moreno-Ostos & A. J. Green, 2006. Species richness and distribution of copepods and cladocerans in relation to hydroperiod and other environmental variables in Doñana, south-west Spain. Hydrobiologia 556: 327–340.

    Article  Google Scholar 

  • Green, A. J. & J. Figuerola, 2005. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Diversity and Distributions 11: 149–156.

    Article  Google Scholar 

  • Havel, J. E. & K. A. Medley, 2006. Biological invasions across spatial scales: intercontinental, regional, and local dispersal of cladoceran zooplankton. Biological Invasions 8: 459–473.

    Article  Google Scholar 

  • Hebert, P. D. N. & B. J. Hann, 1986. Patterns in the composition of Arctic tundra pond microcrustacean communities. Canadian Journal of Fisheries and Aquatic Sciences 43: 1416–1425.

    Article  Google Scholar 

  • Hulsmans, A., K. Moreau & L. De Meester, 2007. Direct and indirect measures of dispersal in the fairy shrimp Branchipodopsis wolfi indicate a small-scale isolation-by-distance pattern. Limnology and Oceanography 52: 676–684.

    Google Scholar 

  • Jenkins, D. G., 2006. In search of quorum effects in metacommunity structure: species co-occurrence analyses. Ecology 87: 1523–1531.

    Article  PubMed  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • O’Brien, W. J., M. Barfield, N. D. Bettez, G. M. Gettel, A. E. Hershey, M. E. McDonald, M. C. Miller, H. Mooers, J. Pastor, C. Richards & J. Schuldt, 2004. Physical, chemical, and biotic effects on arctic zooplankton communities and diversity. Limnology and Oceanography 49: 1250–1261.

    Article  CAS  Google Scholar 

  • Papke, R. T. & D. M. Ward, 2004. The importance of physical isolation to microbial diversification. FEMS Microbiology Ecology 48: 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • R Development Core Team, 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Richter-Boix, A., G. A. Llorente & A. Montori, 2007. Structure and dynamics of an amphibian metacommunity in two regions. Journal of Animal Ecology 76: 607–618.

    Article  PubMed  Google Scholar 

  • Romanuk, T. N. & J. Kolasa, 2002. Environmental variability alters the relationship between richness and variability of community abundances in aquatic rock pool microcosms. Ecoscience 9: 55–62.

    Google Scholar 

  • Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.

    Article  Google Scholar 

  • Serrano, L. & K. Fahd, 2005. Zooplankton communities across a hydroperiod gradient of temporary ponds in the Donana National Park (SW Spain). Wetlands 25: 101–111.

    Article  Google Scholar 

  • Tavernini, S., G. Mura & G. Rossetti, 2005. Factors influencing the seasonal phenology and composition of zooplankton communities in mountain temporary pools. International Review of Hydrobiology 90: 358–375.

    Article  CAS  Google Scholar 

  • Therriault, T. W. & J. Kolasa, 2001. Dessication frequency reduces species diversity and predictability of community structure in coastal rock pools. Israel Journal of Zoology 47: 477–489.

    Article  Google Scholar 

  • Weider, L. J. & P. D. N. Hebert, 1987. Ecological and physiological differentiation among low-arctic clones of Daphnia pulex. Ecology 68: 188–198.

    Article  Google Scholar 

  • Whitaker, R. J., D. W. Grogan & J. W. Taylor, 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301: 976–978.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Churchill Northern Studies Centre for their hospitality, Paul Hebert and Peter Kevan for leading the Churchill trip, Larry Weider for his ‘rock-bluffing’ guidance, Tim Bartley for his field assistance, and two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid S. Y. Ng.

Additional information

Handling editor: S. I. Dodson

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, I.S.Y., Carr, C.M. & Cottenie, K. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619, 133–143 (2009). https://doi.org/10.1007/s10750-008-9605-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9605-8

Keywords

Navigation