Skip to main content
Log in

Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The use of species traits offers a promising approach to the understanding of the main processes underlying metacommunity patterns. We analyzed samples of periphytic algae in 30 environments of the Upper Paraná River floodplain in southeastern Brazil, to test the hypotheses that variation in species composition of algal groups with low dispersal abilities would be mainly explained by spatial variables; on the other hand, algal groups with higher dispersal abilities would be better explained by environmental variables. The variation in community structure was mainly correlated with environmental variables. This result is in line with a growing body of evidence indicating a predominant role of species-sorting processes. The more-refined prediction that the spatial variables would gradually become more important across a gradient of adherence or size was, however, not supported by our analyses. Also, the large unexplained variation suggested that these periphytic communities were assembled by idiosyncratic events, or that other variables that are often neglected in studies of aquatic metacommunities needed to be included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe, S., K. Uchida, T. Nagumo & J. Tanaka, 2007. Alterations in the biomass-specific productivity of periphyton assemblages mediate by fish grazing. Freshwater Biology 52: 1486–1493.

    Article  Google Scholar 

  • Agostinho, A. A., F. M. Pelicice, A. C. Petry, L. C. Gomes & H. F. Júlio Jr., 2007. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health & Management 10: 174–186.

    Article  Google Scholar 

  • Anagnostidis, K. & J. Komárek, 1988. Morden approach to the classification system of Cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiologie (Algological Studies) 50–53 (suppl. 80): 327–472.

  • Astorga, A., J. Oksanen, M. Luoto, J. Soininen, R. Virtanen & T. Muotka, 2012. Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Global Ecology and Biogeography 21: 365–375.

    Article  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Bicudo, D. C., 1990. Considerações sobre metodologia de contagem de algas do perifíton. Acta Limnologica Brasiliensia 3: 459–475.

    Google Scholar 

  • Bicudo, C. E. M. & M. Menezes, 2006. Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições. RiMa, São Carlos.

    Google Scholar 

  • Biggs, B. J. F., R. J. Stevenson & R. L. Lowe, 1998. A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie 143: 21–56.

    Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & L. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Brunbjerg, A. N., R. Ejrnaes & J.-C. Svenning, 2012. Species sorting dominates plant metacommunity structure in coastal dunes. Acta Oecologica 39: 33–42.

    Article  Google Scholar 

  • Burliga, A. L. M., A. Schwarzbold, E. A. Lobo & V. D. Pillar, 2004. Functional types in epilithon algae communities of the Maquiné River, Rio Grande do Sul, Brazil. Acta Limnologica Brasiliensia 16: 369–380.

    Google Scholar 

  • Cerná, K., 2010. Small-scale spatial variation of benthic algal assemblages in a peat bog. Limnologica 40: 315–321.

    Article  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • Croasdale, H. T. & E. A. Flint, 1986. Flora of New Zealand: Freshwater Algae, Chlorophyta, Desmids with Ecological Comments on their Habitats, 1. Government Printing Office, Wellington.

    Google Scholar 

  • Croasdale, H. T. & E. A. Flint, 1988. Flora of New Zealand: Freshwater Algae, Chlorophyta, Desmids with Ecological Comments on their Habitats, 2. The Caxton Press, Christchurch.

    Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Dillard, G. E., 1990. Freshwater algae of the Southeastern United States. Part 3. Chlorophyceae: Zygnematales: Zygnemataceae, Mesotaeniaceae and Desmidiaceae (Section 1). Bibliotheca Phycologica 85: 1–172.

    Google Scholar 

  • Dillard, G. E., 1991. Freshwater algae of the Southeastern United States. Part 4. Chlorophyceae: Zygnematales: Desmidiaceae (Section 2). Bibliotheca Phycologica 89: 1–205.

    Google Scholar 

  • Diniz-Filho, J. A. F. & L. M. Bini, 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecology and Biogeography 14: 177–185.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., T. Siqueira, A. A. Padial, T. F. Rangel, V. L. Landeiro & L. M. Bini, 2012. Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121: 201–210.

    Article  Google Scholar 

  • Dray, S., P. Legendre & P. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493.

    Article  Google Scholar 

  • Ferragut, C. & D. C. Bicudo, 2010. Periphytic algal community adaptive strategies in N and P enriched experiments in a tropical oligotrophic reservoir. Hydrobiologia 646: 295–309.

    Article  CAS  Google Scholar 

  • Gilbert, B. & J. R. Bennett, 2010. Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology 47: 1071–1082.

    Article  Google Scholar 

  • Gilbert, B. & M. J. Lechowicz, 2004. Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences of the United States of America 101: 7651–7656.

    Article  PubMed  CAS  Google Scholar 

  • Giné, M. F., H. Bergamin, E. A. G. Zagatto & B. F. Reis, 1980. Simultaneus determination of nitrite and nitrate by flow injection analysis. Analytica Chimica Acta 114: 191–197.

    Article  Google Scholar 

  • Graham, L. E. & L. W. Wilcox, 2000. Algae. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Griffith, D. A. & P. R. Peres-Neto, 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87: 2603–2613.

    Article  PubMed  Google Scholar 

  • Hájek, M., J. Rolecek, K. Cottenie, K. Kintrová, M. Horsák, A. Poulícková, P. Hájková, M. Fránková & D. Díte, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.

    Article  Google Scholar 

  • Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykra, J. Soininen, L. C. G. Vieira & J. A. F. Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.

    Article  Google Scholar 

  • Heino, J., M. Grönroos, J. Soininen, R. Virtanen & T. Muotka, 2012. Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121: 537–544.

    Article  Google Scholar 

  • Holyoak, M., M. A. Leibold & R. D. Holt, 2005. Metacommunities: Spatial Dynamics and Ecological Communities. The University of Chicago Press, Chicago.

    Google Scholar 

  • Hoverman, J. T., C. J. Davis, E. E. Werner, D. K. Skelly, R. A. Relyea & L. Yurewicz, 2011. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1058.

    Article  Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1986. Modern approach to the classification system of Cyanophytes. 2. Chroococcales. Archiv für Hydrobiologie (Algological Studies) 43 (suppl. 73): 157–226.

  • Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of Cyanophytes. 4. Nostocales. Archiv für Hydrobiologie (Algological Studies) 56 (suppl. 82): 247–345.

  • Koroleff, K. J. H., 1976. Determination of ammonia. In Grasshoff, E. & E. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie Wheinhein, New York: 117–181.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae: Naviculaceae. In Ettl, H., J. Gerloff, H. Heyning & D. Mollenhauer (eds), Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Heidelberg.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heyning & D. Mollenhauer (eds), Süsswasser flora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Heidelberg.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heyning & D. Mollenhauer (eds), Süsswasser flora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Heidelberg.

    Google Scholar 

  • Landeiro, V. L., L. M. Bini, F. R. C. Costa, E. Franklin, A. Nogueira, J. L. P. de Souza, J. Moraes & W. E. Magnusson, 2012a. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators 23: 366–373.

    Article  Google Scholar 

  • Landeiro, V. L., L. M. Bini, A. S. Melo, A. M. O. Pes & W. E. Magnusson, 2012b. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology 57: 1554–1564.

    Article  Google Scholar 

  • Langenheder, S. & H. Ragnarsson, 2007. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88: 2154–2161.

    Article  PubMed  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.

    Article  PubMed  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and statistical basis of estimation by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, New York.

    Google Scholar 

  • Melo, A. S., F. Schneck, L. U. Hepp, N. R. Simões, T. Siqueira & L. M. Bini, 2011. Focusing on variation: methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnologica Brasiliensia 23: 318–331.

    Article  Google Scholar 

  • Mihaljevic, J. R., 2012. Linking metacommunity theory and symbiont evolutionary ecology. Trends in Ecology and Evolution 27: 323–329.

    Article  PubMed  Google Scholar 

  • Mouquet, N. & M. Loreau, 2003. Community patterns in source-sink metacommunities. American Naturalist 162: 544–557.

    Article  PubMed  Google Scholar 

  • Nabout, J. C., T. Siqueira, L. M. Bini & I. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 720–726.

    Article  Google Scholar 

  • O’Malley, M. A., 2007. The nineteenth century roots of ‘everything is everywhere’. Nature Reviews 5: 647–651.

    Article  PubMed  Google Scholar 

  • Özkan, K., J.-C. Sevenning & E. Jeppensen, 2013. Environmental species sorting dominates forest-bird community assembly across scales. Journal of Animal Ecology 82: 266–274.

    Article  PubMed  Google Scholar 

  • Padial, A. A., T. Siqueira, J. Heino, L. C. G. Vieira, C. C. Bonecker, F. A. Lansac-Tôha, L. C. Rodrigues, A. M. Takeda, S. Train, L. M. V. Velho & L. M. Bini, 2012. Relationships between multiple biological groups and classification schemes in a Neotropical floodplain. Ecological Indicators 13: 55–65.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2010. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518–540.

    Article  Google Scholar 

  • Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.

    Article  PubMed  Google Scholar 

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.

    Article  Google Scholar 

  • Passy, S. I., 2012. A hierarchical theory of macroecology. Ecology Letters 15: 923–934.

    Article  PubMed  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Prescott, G. W., H. T. Croasdale, W. C. Vinyard & C. E. M. Bicudo, 1981. A Synopsis of North American Desmids. Part 2. Desmidiaceae: Placodermae. Section 3. In Prescott, G. W. (ed.), Desmidiales. University Nebraska Press, Lincoln.

  • Prescott, G. W., 1982. Algae of the Western Great Lakes Area. Otto Koeltz Science Publishers, Königstein.

    Google Scholar 

  • Prescott, G. W., C. E. M. Bicudo & W. C. Vinyard, 1982. A Synopsis of North American Desmids. Part 2. Desmidiaceae: Placodermae. Section 4. In Prescott, G. W. (ed.), Desmidiales. University Nebraska Press, Lincoln.

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org/.

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Siqueira, T., L. M. Bini, F. O. Roque, S. R. M. Couceiro, S. Trivinho-Strixino & K. Cottenie, 2012. Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35: 183–192.

    Article  Google Scholar 

  • Smith, T. W. & J. T. Lundholm, 2010. Variation partitioning a tool to distinguish between niche and neutral process. Ecography 33: 648–655.

    Article  Google Scholar 

  • Soininen, J. & J. Weckström, 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental and Applied Limnology 174: 205–213.

    Article  Google Scholar 

  • Soininen, J., R. Paavola & T. Muotka, 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27: 330–342.

    Article  Google Scholar 

  • Souza-Filho, E. E., P. C. Rocha, E. Comunello & J. C. Stevaux, 2004. Effects of the Porto Primavera Dam on Physical environment of the downstream floodplain. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 55–74.

    Google Scholar 

  • Stevaux, J. C., 1994. The upper Paraná River (Brazil): Geomorphology, sedimentology and paleoclimatology. Quaternary International 21: 143–161.

    Article  Google Scholar 

  • Stevaux, J. C., D. P. Martins & M. Meurer, 2009. Changes in a large regulated tropical river: the Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 113: 230–238.

    Article  Google Scholar 

  • Thomaz, S. M., D. C. Souza & L. M. Bini, 2003. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia 505: 119–128.

    Article  Google Scholar 

  • Thompson, R. & C. Townsend, 2006. A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology 75: 476–484.

    Article  PubMed  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkmmnung der quantitativen phytoplankton-methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman & L. De Meester, 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academic Science 104: 20404–20409.

    Article  Google Scholar 

  • Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.

    Google Scholar 

  • Wetzel, R. G., 1983. Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague.

    Book  Google Scholar 

  • Wetzel, C. E., D. C. Bicudo, L. Ector, E. A. Lobo, J. Soininen, V. L. Landeiro & L. M. Bini, 2012. Distance decay of similarity in Neotropical diatom communities. Plos One 7: e 45071.

  • Wilson, D. S., 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73: 1984–2000.

    Article  Google Scholar 

  • Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie, 2012. The terminology of metacommunity ecology. Trends in Ecology & Evolution 27: 253–254.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jaime Luiz Lopes Pereira for designing the map, and CAPES for granting a scholarship to the first author. We would like to thank two anonymous reviewers for their helpful comments on the manuscript. This study was supported by the “Long-Term Ecological Research” (LTER) program of CNPq. Liliana Rodrigues and Luis Mauricio Bini have been supported by CNPq productivity grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa M. Algarte.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algarte, V.M., Rodrigues, L., Landeiro, V.L. et al. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter?. Hydrobiologia 722, 279–290 (2014). https://doi.org/10.1007/s10750-013-1711-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1711-6

Keywords

Navigation