Skip to main content
Log in

Replacement of rooted macrophytes by filamentous macroalgae: effects on small fishes and macroinvertebrates

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In aquatic environments around the globe, rooted macrophytes have been replaced by filamentous macroalgae. The consequences of such shifts in vegetative habitat for fauna are poorly understood. Given differences in morphology and life history characteristics of rooted macrophytes and filamentous macroalgae, we hypothesized that these habitat types were not functionally redundant for small-bodied fishes and macroinvertebrates. We examined this hypothesis in spring-fed Florida rivers characterized by decreases in native rooted macrophytes and concomitant increases in filamentous macroalgae. Although faunal densities were generally greater in filamentous macroalgae than in rooted macrophytes, differences in the community assemblage structure suggest that the two types of vegetative habitat do not function interchangeably. Accordingly, continued replacement of rooted macrophytes with filamentous macroalgae is expected to affect the small fish and macroinvertebrate community, as well as higher trophic levels that depend on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Able, K. W. & S. M. Hagan, 2003. Impact of common reed, Phragmites australis, on essential fish habitat: influence on reproduction, embryological development and larval abundance of mummichog (Fundulus heteroclitus). Estuaries 26: 40–50.

    Article  Google Scholar 

  • Airoldi, L., D. Balata & M. W. Beck, 2008. The gray zone: relationships between habitat loss and marine diversity and their applications in conservation. Journal of Experimental Marine Biology and Ecology 366: 8–15.

    Article  Google Scholar 

  • Allan, J. D. & A. S. Flecker, 1992. Biodiversity conservation in running waters. BioScience 43: 32–43.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Bartholomew, A., R. J. Diaz & G. Ciccetti, 2000. New dimensionless indices of structural habitat complexity: predicted and actual effects on a predator’s foraging success. Marine Ecology Progress Series 206: 45–58.

    Article  Google Scholar 

  • Camp, E. V., 2010. Relationships between small bodied fishes and crustaceans and submersed aquatic vegetation: implications of habitat change. Thesis. University of Florida: Gainesville, FL.

  • Camp, E. V., D. E. Gwinn, M. V. Lauretta, W. E. Pine & T. K. Frazer, 2011. Use of recovery probabilities can improve sampling efficiency for throw traps in vegetated habitats. Transactions of American Fisheries Society 140: 164–169.

    Google Scholar 

  • Camp, E. V., D. E. Gwinn, W. E. Pine & T. K. Frazer, 2012. Changes in submersed aquatic vegetation affect predation risk of a common prey fish Lucania parva (Cyprinodontiformes: Fundulidae) in a spring-fed coastal river. Fisheries Management and Ecology 19: 245–251.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell (eds), 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Chick, J. H. & C. C. McIvor, 1994. Patterns in the abundance and composition of fishes among beds of different macrophytes: viewing a littoral zone as a landscape. Canadian Journal of Fish and Aquatic Science 51: 2873–2882.

    Article  Google Scholar 

  • Chick, J. H. & C. C. McIvor, 1997. Habitat selection by three littoral zone fishes: effects of predation pressure, plant density, and macrophyte type. Ecology of Freshwater Fish 6: 27–35.

    Article  Google Scholar 

  • Dahlgren, C. P. & D. B. Eggleston, 2000. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81: 2227–2240.

    Article  Google Scholar 

  • Deegan, L. A., A. Wright, S. G. Ayvazian, J. T. Finn, H. Golden, R. R. Merson & J. Harrison, 2002. Nitrogen loading alters seagrass ecosystem structure and support of higher trophic levels. Aquatic Conservation: Marine and Freshwater Ecosystems 12: 193–212.

    Article  Google Scholar 

  • Dodds, W. K. & D. A. Gudder, 1992. The ecology of Cladophora. Journal of Phycology 4: 415–427.

    Article  Google Scholar 

  • Duarte, C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Dutterer, A. C. & M. S. Allen, 2008. Spotted sunfish habitat selection at three Florida rivers and implications for minimum flows. Transactions of the American Fisheries Society 137: 454–466.

    Article  Google Scholar 

  • Frazer, T.K., S.K. Notestein & W.E. Pin, 2006. Changes in the physical, chemical and vegetative characteristics of the Homosassa, Chassahowitzka and Weeki Wachee Rivers. Final report. Southwest Florida Water Management District, Brooksville, FL: 163 pp.

  • Frazer, T. F., W. E. Pine III & M. V. Lauretta, 2011. Increased nutrient loading of spring-fed coastal rivers: Effects on habitat and faunal communities. Final report. Florida Fish and Wildlife Conservation Commission, Tallahassee, FL: 153 pp.

  • Glancy, T. P., T. K. Frazer, C. E. Cichra & W. J. Lindberg, 2003. Comparative patterns of occupancy by decapod crustaceans in seagrass, oyster, and marsh-edge habitats in a northeast Gulf of Mexico estuary. Estuaries 26: 1291–1301.

    Article  Google Scholar 

  • Grenouillet, G. & D. Pont, 2001. Juvenile fishes in macrophyte beds: influence of food resources, habitat structure and body size. Journal of Fish Biology 59: 939–959.

    Article  Google Scholar 

  • Hauxwell, J. A., C. W. Osenberg & T. K. Frazer, 2004. Conflicting management goals: manatees and invasive competitors inhibit restoration of a native macrophyte. Ecological Applications 14: 571–586.

    Article  Google Scholar 

  • Hayes, D. B., C. D. Ferreri & W. W. Taylor, 1996. Linking fish habitat to their population dynamics. Canadian Journal of Fisheries and Aquatic Sciences 53: 383–390.

    Article  Google Scholar 

  • Heck, K. L. & R. J. Orth, 2006. Predation in seagrass beds. In Larkum, A. W. D., R. J. Orth & C. M. Duarte (eds), Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht: 537–550.

    Google Scholar 

  • Heck, K. L. & J. F. Valentine, 2007. The primacy of top-down effects in shallow benthic ecosystems. Estuaries and Coasts 30: 371–381.

    Article  Google Scholar 

  • Heck, K. L., G. Hays & R. J. Orth, 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123–136.

    Article  Google Scholar 

  • Heffernan, J. B., D. M. Liebowitz, T. K. Frazer, J. M. Evans & M. J. Cohen, 2010. Algal blooms and the nitrogen enrichment hypothesis in Florida Springs: evidence, alternatives, and adaptive management. Ecological Applications 20: 816–829.

    Article  PubMed  Google Scholar 

  • Hobbs, N. T. & T. A. Hanley, 1990. Habitat evaluation: do use/availability data reflect carrying capacity? Journal of Wildlife and Management 54: 515–522.

    Article  Google Scholar 

  • Hoyer, M. V., T. K. Frazer, S. K. Notestein & D. E. Canfield, 2004. Vegetative characteristics of three low lying Florida coastal rivers in relation to flow, light, salinity and nutrients. Hydrobiologia 528: 31–43.

    Article  CAS  Google Scholar 

  • Hughes, J. E., L. A. Deegan, J. C. Wyda, M. J. Weaver & A. Wright, 2002. The effects of eelgrass habitat loss on estuarine fish communities of Southern New England. Estuaries 25: 235–249.

    Article  Google Scholar 

  • Hunter, K. L., M. G. Fox & K. W. Able, 2007. Habitat influence on reproductive allocation and growth of the mummichog (Fundulus heteroclitus) in a coastal marsh. Marine Biology 151: 617–627.

    Article  Google Scholar 

  • Jordan, F., 2002. Field and laboratory evaluation of habitat use by rainwater killifish (Lucania parva) in the St. Johns River estuary, Florida. Estuaries 25: 288–295.

    Article  Google Scholar 

  • Jordan, F., S. Coyne & J. C. Trexler, 1997. Sampling fishes in vegetated habitats: effects of habitat structure on sampling characteristics of the 1-m2 throw trap. Transactions of the American Fisheries Society 126: 1012–1020.

    Article  Google Scholar 

  • Kery, M., 2010. Introduction to WinBUGS for Ecologists. Elsevier, Amsterdam.

    Google Scholar 

  • Killgore, K. J., R. P. Morgan II & N. B. Rybicki, 1989. Distribution and abundance of fishes associated with submersed aquatic plants in the Potomac River. North American Journal of Fisheries Management 9(1): 101–111.

    Article  Google Scholar 

  • Knapp, R. A., V. T. Vredenburg & K. R. Matthews, 1998. Effects of stream channel morphology on Golden trout spawning habitat and recruitment. Ecological Applications 8: 1104–1117.

    Article  Google Scholar 

  • Krebs, C. J., 1999. Ecological Methodology. Addison/Longman Publishers, Wesley/New York.

    Google Scholar 

  • Kwak, T. J. & J. T. Peterson, 2007. Community indices, parameters, and comparisons. In Guy, C. S. & M. L. Brown (eds), Analysis and Interpretation of Freshwater Fisheries Data. American Fisheries Society, Bethesda, MD: 677–763.

    Google Scholar 

  • La Peyre, M. K. & J. Gordon, 2012. Nekton density patterns and hurricane recovery in submerged aquatic vegetation, and along non-vegetated natural and created edge habitats. Estuarine, Coastal and Shelf Science 98: 108–118.

    Article  Google Scholar 

  • Lauretta, M. V., 2011. Habitat-mediated community structure within spring-fed rivers. Dissertation. University of Florida: Gainesville, FL.

  • Lauretta, M. V., E. V. Camp, W. E. Pine III & T. K. Frazer, 2013. Catchability model selection for estimating the composition of fishes and invertebrates within dynamic aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 70: 1–12.

    Article  Google Scholar 

  • Livingston, R. J., 1984. Trophic response of fishes to habitat variability in coastal seagrass systems. Ecology 65: 1258–1275.

    Article  Google Scholar 

  • Micheli, F. & B. S. Halpern, 2005. Low functional redundancy in coastal marine assemblages. Ecology Letters 8: 391–400.

    Article  Google Scholar 

  • Moyle, P. B. & R. A. Leidy, 1992. Loss of biodiversity in aquatic ecosystems: evidence from fish faunas. In Feidler, P. L. & S. K. Jain (eds), Conservation Biology: The Theory and Practice of Nature Conservation, Preservation, and Management. Chapman and Hall, New York: 127–170.

    Google Scholar 

  • Notestein, S. K., T. K. Frazer, M. V. Hoyer & D. E. Canfield Jr, 2003. Nutrient limitation of periphyton in a spring-fed, coastal stream in Florida, USA. Journal of Aquatic Plant Management 41: 57–60.

    Google Scholar 

  • Odum, H. T., 1957a. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27: 55–112.

    Article  Google Scholar 

  • Odum, H. T., 1957b. Primary production measurements in eleven Florida springs and a marine turtle-grass community. Limnology and Oceanography 2: 85–97.

    Article  Google Scholar 

  • Peet, R. K., 1974. The measurement of species diversity. Annual Review of Ecology and Systematics 5: 285–307.

    Article  Google Scholar 

  • Pihl, L., H. Wennhage & S. Nilsson, 1994. Fish assemblage structure in relation to macrophytes and filamentous epiphytes in shallow non-tidal rocky- and soft-bottom habitats. Environmental Biology of Fishes 39: 271–288.

    Article  Google Scholar 

  • Pihl, L., I. Isaksson, H. Wennhage & P. O. Moksnes, 1995. Recent increase of filamentous algae in shallow Swedish Bays: effects on the community structure of epibenthic fauna and fish. Aquatic Ecology 29: 349–358.

    Article  Google Scholar 

  • Pine, W. E., S. J. D. Martell, C. J. Walters & J. F. Kitchell, 2009. Counterintuitive responses of fish populations to management actions: some common causes and implications for predications based on ecosystem modeling. Fisheries 34: 165–180.

    Article  Google Scholar 

  • Pinheiro, J. C. & D. M. Bates, 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.

    Book  Google Scholar 

  • Rennie, M. D., N. C. Collins, B. J. Shuter, J. W. Rajotte & P. Couture, 2005. Comparison of methods for estimating activity costs of wild fish populations: more active fish observed to grow slower. Canadian Journal of Fisheries and Aquatic Sciences 62: 767–780.

    Article  Google Scholar 

  • Rooney, T. P. & D. M. Waller, 2003. Direct and indirect effects of white tailed deer in forest ecosystems. Forest Ecology and Management 181: 165–176.

    Article  Google Scholar 

  • Rosenfeld, J. S., 2002. Functional redundancy in ecology and conservation. Oikos 98: 156–162.

    Article  Google Scholar 

  • Rosenfeld, J. S., 2003. Assessing the habitat requirements of stream fishes: an overview and evaluation of different approaches. Transactions of the American Fisheries Society 132: 953–968.

    Article  Google Scholar 

  • Rosenfeld, J. S. & S. Boss, 2001. Fitness consequences of habitat use for juvenile cutthroat trout: energetic costs and benefits in pools and riffles. Canadian Journal of Fisheries and Aquatic Sciences 58: 585–593.

    Article  Google Scholar 

  • Rosenfeld, J. S. & T. Hatfield, 2006. Information needs for assessing critical habitat of freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences 63: 683–699.

    Article  Google Scholar 

  • Rozas, L. P. & T. J. Minello, 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: a review of sampling design and focus on gear selection. Estuaries 20: 199–213.

    Article  Google Scholar 

  • Rozas, L. P. & W. E. Odum, 1987. Fish and macrocrustacean use of submerged plant beds in tidal freshwater marsh creeks. Marine Ecology Progress Series 38: 101–108.

    Article  Google Scholar 

  • Savino, J. F. & R. A. Stein, 1989. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Environmental Biology of Fishes 24: 287–293.

    Article  Google Scholar 

  • Schramm, H. L. & M. J. Maciena, 1986. Distribution and diet of Suwannee bass and largemouth bass in the lower Santa Fe River, Florida. Environmental Biology of Fishes 15: 221–228.

    Article  Google Scholar 

  • Sherwood, G. D., J. Kovecses, A. Hontela & J. B. Rasmussen, 2002. Simplified food webs lead to energetic bottlenecks in polluted lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1–5.

    Article  Google Scholar 

  • Shurin, J. B., E. T. Borer, E. W. Seabloom, C. Anderson, C. A. Blanchette, B. Boitman, S. B. Cooper & B. S. Halpern, 2002. A cross system comparison of the strength of trophic cascades. Ecology Letters 5: 785–791.

    Article  Google Scholar 

  • Silliman, B. R., J. Koppel, M. D. Bertness, L. E. Stranton & I. A. Mendelssohn, 2005. Drought, snails and large-scale die-off of U.S. salt marshes. Science 310: 1803–1806.

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff, J. C., 2008. Energetic consequences of habitat loss: trade-offs in energy acquisition and energy expenditure by Micropterus salmoides. M.S. thesis. University of Florida: Gainesville, FL.

  • Troutman, J. P., D. A. Rutherford & W. E. Kelso, 2007. Patterns of habitat use among vegetation-dwelling littoral fishes in the Atchafalaya River Basin, Louisiana. Transactions of the American Fisheries Society 136: 1063–1075.

    Article  Google Scholar 

  • Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh & K. Foreman, 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.

    Article  Google Scholar 

  • Van Horne, B., 1983. Density as a misleading indicator of habitat quality. Journal of Wildlife Management 47: 893–901.

    Article  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    Article  PubMed  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2006. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150: 141–154.

    Article  PubMed  Google Scholar 

  • Wyda, J. C., L. A. Deegan, J. E. Hughes & M. J. Weaver, 2002. The response of fishes to submerged aquatic vegetation complexity in two ecoregions of the mid-Atlantic bight: Buzzards Bay and Chesapeake Bay. Estuaries and Coasts 25: 86–100.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Florida Fish and Wildlife Conservation Commission State Wildlife Initiative Grant Program for funding that made this project possible. We are also grateful to Drew Dutterer, and Morgan Edwards who provided excellent field and laboratory assistance with sample collection and processing, as well as Daniel Gwinn, who provided useful input on analysis and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward V. Camp.

Additional information

Handling editor: David Dudgeon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camp, E.V., Staudhammer, C.L., Pine, W.E. et al. Replacement of rooted macrophytes by filamentous macroalgae: effects on small fishes and macroinvertebrates. Hydrobiologia 722, 159–170 (2014). https://doi.org/10.1007/s10750-013-1694-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1694-3

Keywords

Navigation