Skip to main content
Log in

Comparative patterns of occupancy by decapod crustaceans in seagrass, oyster, and marsh-edge habitats in a Northeast Gulf of Mexico estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Decapod crustaceans occupying seagrass, salt marsh edge, and oyster habitats within the St. Martins Aquatic Preserve along the central Gulf coast of Florida were quantitatively sampled using a 1-m2 throw trap during July–August 1999 and March–April 2000. Relative abundance and biomass were used as the primary measures to compare patterns of occupancy among the three habitat types. Representative assemblages of abundant and common species from each habitat were compared using Schoener's Percent Similarity Index (PSI). In all, 17,985 decapods were sampled, representing 14 families and 28 species. In the summer sampling period, mean decapod density did not differ between oyster and seagrass habitats, which both held greater densities of decapods than marsh-edge. In the spring sampling period oyster reef habitat supported greater mean decapod density than both seagrass and marsh-edge, which had similar densities of decapods. Habitat-specific comparisons of decapod density between the two sampling periods indicated no clear seasonal effect. In summer 1999, when seagrasses were well established, decapod biomass among the three habitats was not significantly different. During spring 2000, decapod biomass in oyster (41.40 gm−2) was greater than in marshedge (4.20 gm−2), but did not differ from that of seagrass (9.73 g m−2). There was no significant difference in decapod biomas between seagrass and marsh-edge habitats during the spring 2000 sampling period. The assemblage analysis using Schoener's PSI indicated that decapod assemblages associated with oyster were distinct from seagrass and marshedge habitats (which were similar). The results of this study suggest that in comparison to seagrass and marsh-edge habitats, oyster reef habitats and the distinct assemblage of decapod crustaceans that they support represent an ecologically important component of this estuarine system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abele, L. G. andW. Kim. 1986. An Illustrated Guide to the Marine Decapod Crustaceans of Florida. State of Florida, Department of Environmental Protection, Tallahassee, Florida.

    Google Scholar 

  • Bahr, L. M. 1974. Aspects of the structure and function of the intertidal oyster reef community in Georgia. Ph.D. Dissertation, University of Georgia, Athens, Georgia.

    Google Scholar 

  • Bell, J. D. andM. Westoby. 1986. Abundance of macrofauna in dense seagrass is due to habitat preference, not predation.Oecologia 68:205–209.

    Article  Google Scholar 

  • Bell, S. S. 1980. Meiofauna-macrofauna interactions in a high salt marsh habitat.Ecological Monographs 50:487–505.

    Article  Google Scholar 

  • Boesch, D. F. andR. E. Turner. 1984. Dependence of fishery species on salt marshes: The role of food and refuge.Estuaries 7:460–468.

    Article  Google Scholar 

  • Castellanos, D. L. andL. P. Rozas. 2001. Nekton use of submerged aquatic vegetation, marsh, and shallow unvegetated bottom in the Atchafalaya River delta, a Louisiana tidal freshwater ecosystem.Estuaries 24:184–197.

    Article  Google Scholar 

  • Chick, J. H., F. Jordan, J. P. Smith, andC. C. McIvor. 1992. A comparison of four enclosure traps and methods used to sample fishes in aquatic macrophytes.Journal of Freshwater Ecology 7:353–361.

    Google Scholar 

  • Coen, L. D., K. L. Heck, Jr., andL. G. Abele. 1981. Experiments on competition and predation among shrimps of seagrass meadows.Ecology 62:1484–1493.

    Article  Google Scholar 

  • Coen, L. D., D. M. Knott, E. L. Wenner, N. H. Hadley, andA. H. Ringwood. 1999a. Intertidal oyster reef studies in South Carolina: Design, sampling and experimental focus for evaluating habitat value and function, p. 133–158.In M. W. Luckenbach, R. Mann, and J. A. Wesson (eds.), Oyster Reef Habitat Restoration: A Synopsis, and Synthesis of Approaches. Virginia Institute of Marine Science Press. Gloucester Point, Virginia.

    Google Scholar 

  • Coen, L. D., M. W. Luckenbach, and D. L. Breitburg. 1999b. The role of oyster reefs as essential fish habitat: A review of current knowledge and some new perspectives, p. 438–454.In L. Benaka (ed.). Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society Symposium 22, Bethesda, Maryland.

  • Coen, L. D., E. L. Wenner, D. M. Knott, B. Stender, N. H. Hadley, M. Y. Bobo, D. L. Richardson, M. A. Thompson, andR. E. Giotta. 1997. Intertidal oyster reef habitat assessment and restoration: Evaluating habitat use, development and function.Journal of Shelfish Research 16:262.

    Google Scholar 

  • Dame, R. F. 1979. The abundance, diversity, and biomass of macrobenthos on North Inlet, South Carolina, intertidal oyster reefs.Proceedings of the National Shellfish Association 68:6–10.

    Google Scholar 

  • Dame, R. F. andB. C. Patten. 1981. Analysis of energy flows in an inter-tidal oyster reef.Marine Ecology Progress Series 5:115–124.

    Article  Google Scholar 

  • Dittel, A. I., A. H. Hines, G. M. Ruiz, andK. K. Ruffin. 1995. Effects of shallow water refuge on behavior and density dependent mortality of juvenile blue crabs in Chesapeake Bay.Bulletin of Marine Science 57:902–916.

    Google Scholar 

  • Eggleston, D. B., W. E. Elis, L. I., Etherington, C. P. Dahlgren, andM. H. Posey. 1999. Organism responses to habitat fragmentation and diversity: Habitat colonization by estuarine fauna.Journal of Experimental Marine Biology and Ecology 236: 107–132.

    Article  Google Scholar 

  • Eggleston, D. B., L. L. Etherington, andW. E. Elis. 1998. Organism response to habitat patchiness: Species and habitat-dependent recruitment of decapod crustaceans.Journal of Experimental Marine Biology and Ecology 223:111–132.

    Article  Google Scholar 

  • Frazer, T. K. andJ. A. Hale. 2001. Changes in the abundance and distribution of submersed aquatic vegetation along Florida's springs coast: 1992–1999. Final report. Southwest Florida Water Management District, Brooksville, Florida.

    Google Scholar 

  • Frazer, T. K., M. V. Hoyer, S. K. Notestein, D. E. Canfield, F. E. Vose, W. R. Leavens, S. B. Blitch, andJ. Contt. 1998. Nitrogen, phosphorus and chlorophyll relations in selected rivers and nearshore coastal waters along the Big Bend region of Florida. Final report. Suwannee River Water Management District, Live Oak, Florida and Southwest Florida Water Management District, Brooksville, Florida.

    Google Scholar 

  • Frazer, T. K., M. V. Hoyer, S. K. Notestein, J. A. Hale, D. E. Canfield, Jr., andS. B. Blitch. 2001. Water quality characteristics of the nearshore Gulf coast waters adjacent to Citrus, Hernando and Levy counties. Final report. Southwest Florida Water Management District, Brooksville, Florida.

    Google Scholar 

  • Giles, J. H. andG. Zamora. 1973. Cover as a factor in habitat selection by juvenile brown (Penaeus aztecus) and white (Penaeus setiferus) shrimp.Transactions of the American Fisheries Society 102:144–145.

    Article  Google Scholar 

  • Grant, J. andJ. McDonald 1979. Desiccation tolerance ofEurypanopeus depressus (Smith) (Decapoda: Xanthidae) and the exploitation of microhabitat.Estuaries 2:172–177.

    Article  Google Scholar 

  • Halliday, I. A. 1995. Influence of natural fluctuations in seagrass cover on commercial prawn nursery grounds in a subtropical estuary.Marine and Freshwater Research 46:111–1126.

    Article  Google Scholar 

  • Heck, Jr.K. L., K. W. Able, M. P. Fahay andC. T. Roman. 1989. Fishes and decapod crustaceans of Cape Cod eelgrass meadows: Species composition, seasonal abundance patterns, and comparison with non-vegetated substratesEstuaries 12: 59–65.

    Article  Google Scholar 

  • Heck, Jr.K. L., K. W. Able, C. T. Roman, andM. P. Fahay. 1995. Composition, abundance, biomass, and production of macrofauna in a New England estuary: Comparisons among eelgrass meadows and other nursery habitats.Estuaries 18: 379–389.

    Article  Google Scholar 

  • Heck, Jr.,K. L. andT. A. Thoman. 1981. Experiments on predator-prey interactions in vegetated aquatic habitats.Journal of Experimental Marine Biology and Ecology 53:125–134.

    Article  Google Scholar 

  • Heck, Jr.,K. L. andT. A. Thoman 1984. The nursery role of seagrass meadows in the upper and lower reaches of the Chesapeake Bay.Estuaries 7:70–92.

    Article  Google Scholar 

  • Heck, Jr.K. L. andG. S. Wetstone. 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows.Journal of Biogeography 4:135–142.

    Article  Google Scholar 

  • Hines, A. H. andG. M. Ruiz. 1995. Temporal variation in juvenile blue crab mortality: Nearshore shallows and cannibalism in Chesapeake Bay.Bulletin of Marine Science 57:884–901.

    Google Scholar 

  • Hurlbert, S. H. 1978. The measurement of niche overlap and some relatives.Ecology 59:67–77.

    Article  Google Scholar 

  • Jackson, E. L., A. A. Rowden, M. J. Attrill, S. J. Bossey, andM. B. Jones. 2001. The importance of seagrass beds as habitat for fishery species.Oceanography and Marine Biology 39:269–303.

    Google Scholar 

  • Jordan, F., K. J. Babbitt, C. C. McIvor, andS. J. Miller. 2000. Contrasting patterns of habitat use by prawns and crayfish in a headwater marsh of the St. Johns River, Florida.Journal of Crustacean Biology 20:769–776.

    Article  Google Scholar 

  • Jordan, F., S. Coyne, andJ. C. Trexler. 1997. Sampling fishes in vegetated habitats: Effects of habitat structure on sampling characteristics of the 1-m2 throw trap.Transactions of the American Fisheries Society 126:1012–1020.

    Article  Google Scholar 

  • Krebs, C. J. 1999. Ecological Methodology. Addison-Wesley Educational Publishers, Inc., Menlo Park, California.

    Google Scholar 

  • Kushlan, J. A. 1981. Sampling characteristics of enclosure fish traps.Transactions of the American Fisheries Society 110:557–562.

    Article  Google Scholar 

  • Larkum, A. W. D., L. C. Collett, andR. J. Williams. 1984. The standing stock, growth, and shoot production ofZostera capricorni (Aschers), in Botany Bay, New South Wales, Australia.Aquatic Botany 19:307–327.

    Article  Google Scholar 

  • Laughlin, R. A. 1982. Feeding habits of the blue crab,Callinectes sapidus (Rathbun), in the Apalachicola estuary.Florida Bulletin of Marine Science 32:807–822.

    Google Scholar 

  • Leber, K. M. 1985. The influence of predatory decapods, refuge, and microhabitat selection on seagrass communities.Ecology 66:1951–1964.

    Article  Google Scholar 

  • Linton, L. R., R. W. Davies, andF. J. Wrona. 1981. Resource utilization indices and assessment.Journal of Animal Ecology 50:283–292.

    Article  Google Scholar 

  • Luckenbach, M., F. Obeirn, J. Harding, R. Mann, andJ. Nestlerode. 2000. Temporal patterns of fish and decapod utilization of oyster reefs: Comparisons across an estuarine gradient.Journal of Shellfish Research 19:610.

    Google Scholar 

  • McDonald, J. 1977. The comparative intertidal ecology and niche relations of the sympatric mud crabsPanopeus herbstii (Milne-Edwards) andEurypanopeus depressus (Smith) at North Inlet, South Carolina, USA. (Decapoda: Brachyura: Xanthidae). Ph.D. Dissertation, University of South Carolina, Columbia, South Carolina.

    Google Scholar 

  • McDonald, J. 1982. Divergent life history patterns in the co-occurring intertidal crabsPanopeus herbstii andEurypanopeus depressus (Crustacea: Brachyura: Xanthidae).Marine Ecology Progress Series 8:173–180.

    Article  Google Scholar 

  • Meyer, D. L. 1994. Habitat partitioning between the Xanthid crabsPanopeus herbstii andEurypanopeus depressus on intertidal oyster reefs (Crassostrea virginica) in southeastern North Carolina.Estuaries 17:674–679.

    Article  Google Scholar 

  • Meyer, D. L. andE. C. Townsend. 2000. Faunal utilization of created intertidal eastern oyster (Crassostrea virginica) reefs in the southeastern United States.Estuaries 23:34–45.

    Article  Google Scholar 

  • Micheli, F. andC. H. Peterson. 1999. Estuarine vegetated habitats as corridors for predator movements.Conservation Biology 13:869–881.

    Article  Google Scholar 

  • Minello, T. J. 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and Identification of essential fish habitat (EFH), p. 43–75.In L. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society Symposium 22, Bethesda, Maryland.

  • Minello, T. J. andL. P. Rozas. 2002. Nekton in Gulf Coast wetlands: Fine-scale distributions landscape patterns, and restoration implications.Ecological Applications 12:441–455.

    Article  Google Scholar 

  • Minello, T. J. andR. J. Zimmerman. 1983. Fish predation on juvenile brown shrimp,Penaeus aztecus (Ives): The effect of simulated Spartina structure on predation rates.Journal of Experimental Marine Biology and Ecology 72:211–231.

    Article  Google Scholar 

  • Nelson, W. G. 1979. Experimental studies of selective predation on amphipods: Consequences for amphipod distribution and abundance.Journal of Experimental Marine Biology and Ecology 38:225–245.

    Article  Google Scholar 

  • Orth, R. J. andJ. Van Montfrans. 1987. Utilization of seagrass meadow and tidal marsh creek by blue crabsCallinectes sapidus. I. Seasonal and annual variations in abundance with emphasis on post-recruitment juveniles.Marine Ecology Progress Series 41:283–294.

    Article  Google Scholar 

  • Orth, R. J. andJ. Van Montfrans. 1990. Utilization of marsh and seagrass habitats by early stages ofCallinectes sapidus: A latitudinal perspective.Bulletin of Marine Science 46:126–144.

    Google Scholar 

  • Perkins-Visser, E., T. G. Wolcott, andD. L. Wolcott. 1996. Nursery role of seagrass beds: Enhanced growth of juvenile blue crabsCallinectes sapidus (Rathbun).Journal of Experimental Marine Biology and Ecology 198:155–173.

    Article  Google Scholar 

  • Perneger, T. V. 1998. What is wrong with Bonferroni adjustments.British Medical Journal 16:2529–2542.

    Google Scholar 

  • Peterson, C. H. andR. Black. 1994. An experimentalist's challenge—When artifacts of intervention interact with treatments.Marine Ecology Progress Series 111:289–297.

    Article  Google Scholar 

  • Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh.Estuaries 17:235–262.

    Article  Google Scholar 

  • Posey, M. H., T. D. Alphin, andT. K. Frazer. 2001. Oyster reefs as habitat for fish and decapods: Species and landscape considerations. Aquaculture 2001: Book of Abstracts. World Aquaculture Society, Baton Rouge, Louisiana.

    Google Scholar 

  • Posey, M. H., T. D. Alphin, andC. M. Powell. 1999. Use of oyster reefs as habitat for epibenthic fish and decapods, p. 229–237.In M. W. Luckenbach, R. Mann, and J. A. Wesson (eds.), Oyster Reef Habitat Restoration: A Synopsis, and Synthesis of Approaches. Virginia Institute of Marine Science Press, Gloucester Point, Virginia.

    Google Scholar 

  • Posey, M. H. andA. H. Hines. 1991. Complex predator prey interactions within an estuarine benthic community.Ecology 72:2155–2169.

    Article  Google Scholar 

  • Raposa, K. B. andC. T. Roman. 2001. Seasonal habitat-use of nekton in tide-restricted and unrestricted New England salt marsh.Wetlands 21:451–461.

    Article  Google Scholar 

  • Rozas, L. P. andT. J. Minello. 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: A review of sampling design with focus on gear selection.Estuaries 20:199–213.

    Article  Google Scholar 

  • Rozas, L. P. andT. J. Minello. 1998. Nekton use of salt marsh, seagrass, and nonvegetated habitats in a South Texas (USA) estuary.Bulletin of Marine Science 63:481–501.

    Google Scholar 

  • Rozas, L. P. andW. E. Odum. 1987. The role of submerged aquatic vegetation in influencing the abundance of nekton on contiguous tidal fresh-water marshes.Journal of Experimental Marine Biology and Ecology 114:289–300.

    Article  Google Scholar 

  • Rozas, L. P. andD. J. Reed. 1994. Comparing nekton assemblages of subtidal habitats in pipeline canals traversing brackish and saline marshes in coastal Louisiana.Wetlands 14:262–275.

    Article  Google Scholar 

  • Ruiz, G. M., A. H. Hines, andM. H. Posey. 1993. Shallow water as a refuge for fish and crustaceans in non-vegetated estuaries: An example from Chesapeake Bay.Marine Ecology Progress Series 99:1–16.

    Article  Google Scholar 

  • Sand-Jensen, K. 1975. Biomass, net production and growth dynamics in an eelgrass (Zostera marina L.) population in Vellarup Vig, Denmark.Ophelia 14:185–201.

    Google Scholar 

  • Schoener, T. W. 1970. Nonsynchronous spatial overlap of lizards in patchy habitats.Ecology 51:408–418.

    Article  Google Scholar 

  • Sheridan, P. andT. J. Minello. 1999. Use of different types of seagrass beds by fishery species and other estuarine nekton in lower Laguna Madre, Texas.Gulf Research Reports 11:76.

    Google Scholar 

  • Sogard, S. M. 1989. Colonization of artificial seagrass by fishes and decapod crustaceans: Importance of proximity to natural eelgrass.Journal of Experimental Marine Biology and Ecology 133:15–37.

    Article  Google Scholar 

  • Sogard, S. M. andK. W. Able. 1991. A comparison of eelgrass, sea lettuce, macroalgae, and marsh creeks as habitats for epibenthic fishes and decapods.Estuarine, Coastal and Shelf Science 33:501–519.

    Article  Google Scholar 

  • Sogard, S. M. andK. W. Able. 1994. Diel variation in immigration of fishes and decapod crustaceans to artificial seagrass habitat.Estuaries 17:622–630.

    Article  Google Scholar 

  • Statistical Analysis Systems (SAS) 1996. SAS Statistics User's Guide. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • Stoner, A. W. 1982. The influence of benthic macrophytes on the foraging behavior of pinfish,Lagodon rhomboides (Linnaeus).Journal of Experimental Marine Biology and Ecology 58:271–284.

    Article  Google Scholar 

  • Stunz, G. W., T. J. Minello, andP. S. Levin. 2002. A comparison of early juvenile red drum densities among various habitat types in Galveston Bay, Texas.Estuaries 25:76–85.

    Article  Google Scholar 

  • Thomas, J. T., R. J. Zimmerman, andT. J. Minello. 1990. Abundance patterns of juvenile blue crabs (Callinectes sapidus) in nursery habitats of two Texas bays.Bulletin of Marine Science 46:115–125.

    Google Scholar 

  • Tupper, M. andK. W. Able. 2000. Movements and food habits of striped bass (Morone saxatilis) in Delaware Bay (USA) salt marshes: Comparison of a restored and a reference marsh.Marine Biology 137:1049–1058.

    Article  Google Scholar 

  • Weinstein, M. P. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.Fisheries Bulletin 77:339–357.

    Google Scholar 

  • Welch, B. L. 1975. The role of grass shrimp,Palaemonetes pugio, in a tidal marsh ecosystem.Ecology 56:513–530.

    Article  Google Scholar 

  • Wells, H. 1961. The fauna of oyster beds with special reference to the salinity factor.Ecological Monographs 31:239–266.

    Article  Google Scholar 

  • Wenner, E. L. andH. R. Beatty. 1993. Utilization of shallow estuarine habitats in South Carolina, USA, by postlarva and juvenile stages ofPenaeus spp. (Decapoda, Penaeidae).Journal of Crustacean Biology 13:280–295.

    Article  Google Scholar 

  • Wenner, E. L., H. R. Beatty, andL. Coen. 1996. A method for quantitatively sampling nekton on intertidal oyster reefs.Journal of Shellfish Research 15:769–775.

    Google Scholar 

  • Williams, A. B. 1984. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Wilson, K. A., K. L. Heck, andK. W. Able. 1987. Juvenile blue crab,Callinectes sapidus, survival: An evaluation of eelgrass,Zostera marina, as refuge.Fishery Bulletin 85:53–58.

    Google Scholar 

  • Wilson, K. A., K. L. Able, andK. L. Heck. 1990. Predation rates on blue crabs in estuarine nursery habitats: Evidence for the importance of macroalgae (Ulva lactuca).Marine Ecology Progress Series 58:243–251.

    Article  Google Scholar 

  • Wolda, H. 1981. Simarity indices, sample size and diversity.Oecologia 50:296–302.

    Article  Google Scholar 

  • Zimmerman, R. J. 1989. An assessment of salt marsh usage by estuarine aquatic fauna at Grand Isle, Louisiana. NMFS/SEC Report to Environmental Protection Agency Region IV (Dallas). National marine Fisheries Service Galveston Laboratory, Galveston, Texas.

    Google Scholar 

  • Zimmerman, R. J. andT. J. Minello. 1984. Densities ofPenaeus aztecus, Penaeus setiferus, and other natant macrofauna in a Texas salt marsh.Estuaries 7:421–423.

    Article  Google Scholar 

Sources of Unpublished Materials

  • Blitch, S. Unpublished Data. Department of Environmental Protection, Apalachicola National Estuarine Research Reserve, 350 Carroll Street, Eastpoint, Florida 32328.

  • Coen, L. D. Personal Communication. Marine Resources Research Institute, SCDNR, 217 Fort Johnson Road, Charleston, South Carolina 29412.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Glancy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glancy, T.P., Frazer, T.K., Cichra, C.E. et al. Comparative patterns of occupancy by decapod crustaceans in seagrass, oyster, and marsh-edge habitats in a Northeast Gulf of Mexico estuary. Estuaries 26, 1291–1301 (2003). https://doi.org/10.1007/BF02803631

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803631

Keywords

Navigation