Skip to main content

Factors Influencing Mangrove Ecosystems

  • Chapter
  • First Online:
Mangroves: Ecology, Biodiversity and Management

Abstract

Mangroves occur in coastal settings of estuaries, deltas, lagoons, open coasts and oceanic low islands. In these settings, mangrove attributes are influenced by physical factors of temperature, coastal typology, ocean currents and land barriers, wave action and sediment supply, river catchment discharge and sediment yield, and tidal range and inundation frequencies. Factors of gradients and tidal ranges control the lateral extent of mangroves through inundation frequency, and factors influencing accretion rates in the context of relative sea level change can shift or eliminate mangrove extents over time. Mangroves are however resilient systems within steady state equilibrium, that allows recovery from minor perturbations. Factors influencing mangroves can however exceed tipping points of tolerance, bringing a sudden change in ecosystem function and breakdown of equilibrium. Stressors that may cause critical reduction of mangrove resilience are the impacts from humans, climate becoming significantly drier, increased inundation, reduced sedimentation supply, and relative sea level rise. Rehabilitation can be successful if ecological guidance on mangrove restoration is followed, particularly topographic positioning with respect to tidal inundation frequency factors. Understanding of the physical factors that influence mangrove ecosystems that contribute to variation in processes, that result in spatial and temporal differences in mangrove attributes, is essential to effective management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajonina GN, Kairo J, Grimsditch G, Sembres T, Chuyong G, Diyouke E (2014) Assessment of mangrove carbon stocks in Cameroon, Gabon, the Republic of Congo (RoC) and the Democratic Republic of Congo (DRC) including their potential for reducing emissions from deforestation and forest degradation (REDD+). In: Diop S, Barusseau J-P, Descamps C (eds) The land/ocean interactions in the coastal zone of West and Central Africa, Springer, Cham, p. 177–189.

    Chapter  Google Scholar 

  • Alvarez W, Alvarez LW, Asaro F, Michel HV (1984) The end of the Cretaceous: sharp boundary or gradual transition? Science 223(4641):1183–1186.

    Article  CAS  PubMed  Google Scholar 

  • Ashbridge EF, Bartolo R, Finlayson CM, Lucas RM, Rogers K, Woodroffe CD (2019) Assessing the distribution and drivers of mangrove dieback in Kakadu National Park, northern Australia. Estuar Coast Shelf Sci 228. https://doi.org/10.1016/j.ecss.2019.106353

  • Aung TY, Than MM, Katsuhiro O, Yukira M (2011) Assessing the status of three mangrove species restored by the local community in the cyclone-affected area of the Ayeyarwady Delta, Myanmar. Wetl Ecol Manage 19(2):195–208.

    Article  Google Scholar 

  • Blasco F, Saenger P, Janodet E (1996) Mangroves as indicators of coastal change. Catena 27:167–178.

    Article  Google Scholar 

  • Brinkman RM, Massel SR, Ridd PV, Furukawa K (2007) Surface wave attenuation in mangrove forests. Proc 13th Austral Coastal Ocean Engineer Conf 2:941–949.

    Google Scholar 

  • Brockmeyer RE Jr, Rey JR, Virnstein RW, Gilmore RG, Ernest L (1997) Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA). Wetl Ecol Manage 4:93–109.

    Article  Google Scholar 

  • Brunsden D, Thornes JB (1979) Landscape sensitivity and change. Trans Inst Brit Geogr 4(4):463–484.

    Article  Google Scholar 

  • Bunting P, Rosenqvist A, Lucas RM, Rebelo LM, Hilarides L, Thomas N, Hardy A, Itoh T, Shimada M, Finlayson CM (2018) The global mangrove watch-a new 2010 global baseline of mangrove extent. Remote Sens 10:1669. https://doi.org/10.3390/rs10101669

    Article  Google Scholar 

  • Cavanaugh KC, Osland MJ, Bardou R, Hinojosa-Arango G, López-Vivas JM, Parker JD, Rovai AS (2018) Sensitivity of mangrove range limits to climate variability. Global Ecol Biogeogr 27(8):925–935.

    Article  Google Scholar 

  • Cavanaugh KC, Dangremond EM, Doughty CL, Williams AP, Parker JD, Hayes MA, Rodriguez W, Feller IC (2019) Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc Nat Acad Sci 116(43):21602–21608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC (2003) Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91(6):1093–1105.

    Article  Google Scholar 

  • Choy SC, Booth WE (1994) Prolonged inundation and ecological changes in an Avicennia mangrove: implications for conservation and management. Hydrobiol 285(1):237–247.

    Google Scholar 

  • Dahdouh-Guebas F, Jayatissa LP, Di Nitto D, Bosire JO, Lo Seen D, Koedam N (2005) How effective were mangroves as a defence against the recent tsunami? Curr Biol 15:R443–447.

    Article  CAS  PubMed  Google Scholar 

  • Danielson F, Soerensen M, Olwig M, Selvam V, Parish F, Burgess N, Hiraishi T, Karunagaran V, Rasmussen M, Hansen L, Quarto A, Nyoman S (2005) The Asian tsunami: A protective role for coastal vegetation. Science 310:643.

    Article  Google Scholar 

  • de Klerk J (2016) The slow death of the Ciénaga Grande de Santa Marta. The City Paper (Bogata) 22 September 2016. https://thecitypaperbogota.com/features/the-slow-death-of-the-cienaga-grande-de-santa-marta/14235.

  • de Lange WP, De Lange PJ (1994) An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. J Coast Res 10(3):539–548.

    Google Scholar 

  • Duke NC (2020) Mangrove harbingers of coastal degradation seen in their responses to global climate change coupled with ever-increasing human pressures. CHEC Hum Ecol 30:19–23.

    Google Scholar 

  • Duke NC (2016) Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Mar Pollut Bull 109(2):700–715.

    Article  CAS  PubMed  Google Scholar 

  • Duke NC (2017) Mangrove floristics and biogeography revisited: further deductions from biodiversity hot spots, ancestral discontinuities, and common evolutionary processes. In: Rivera-Monroy VH, Lee SY, Kristensen E, Twilley RR (eds) Mangrove ecosystems: A global biogeographic perspective, Springer, Cham, p. 17–53.

    Chapter  Google Scholar 

  • Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJ, Van Oosterzee P, Mackenzie J, Morning HS, Burrows D (2017) Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine Freshw Res 68(10):1816–1829.

    Article  Google Scholar 

  • Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol Biogeog Let 7:27–47

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ (1997) Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112(4):435–446.

    Google Scholar 

  • Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecol. Biogeogr. 8, 95–115.

    Google Scholar 

  • Ellison JC (2020) Mangrove ecosystem-based adaptation: Advice on improved success. CHEC Hum Ecol 30:37–40.

    Google Scholar 

  • Ellison JC (2019) Biogeomorphology of mangroves. In: Wolanski E, Cahoon D, Perillo GME (eds) Coastal wetlands: An ecosystem integrated approach, Elsevier Science, Amsterdam, p. 687–715.

    Chapter  Google Scholar 

  • Ellison JC (2005) Holocene palynology and sea-level change in two estuaries in Southern Irian Jaya. Palaeogeogr Palaeoclimatol Palaeoecol 220:291–309.

    Article  Google Scholar 

  • Ellison JC (2009) Geomorphology and sedimentology of mangrove swamps. In: Wolanski E, Cahoon D, Perillo GME (eds) Coastal wetlands: an ecosystem integrated approach. Elsevier Science, Amsterdam, p 564–591.

    Google Scholar 

  • Ellison JC (2015) Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetl Ecol Manage 23:115–137.

    Article  Google Scholar 

  • Ellison JC (2008) Long-term retrospection on mangrove development using sediment cores and pollen analysis. Aquat Bot 89:93–104.

    Article  Google Scholar 

  • Ellison JC (1997). Mangrove community characteristics and litter production in Bermuda. In: Kjerfve B, Lacerda LD, Diop ES (eds) Mangrove forests of the Latin America and Africa regions, UNESCO, Paris, p. 5–17.

    Google Scholar 

  • Ellison JC, Jungblut V, Anderson P, Slaven C (2012) Manual for mangrove monitoring in the Pacific Islands Region. Secretariat of the Pacific Regional Environment Program, Apia, Samoa.

    Google Scholar 

  • Ellison JC, Zouh I (2012) Vulnerability to climate change of mangroves: Assessment from Cameroon, Central Africa. Biology 1:617–638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elster C, Perdomo L, Schnetter M-L (1999) Impact of ecological factors on the regeneration of mangroves in the Cienaga Grande de Santa Marta, Colombia. Hydrobiol 413:35–46.

    Article  Google Scholar 

  • Eslami-Andergoli L, Dale PE, Knight JM, McCallum H. (2015) Approaching tipping points: a focussed review of indicators and relevance to managing intertidal ecosystems. Wetl Ecol Manage 23(5):791–802.

    Article  Google Scholar 

  • Forbes AT, Cyrus DP (1992) Impact of a major cyclone on southeast African estuarine lake system. Neth J Sea Res 30:265–272.

    Article  Google Scholar 

  • Friess DA (2017) JG Watson, inundation classes, and their influence on paradigms in mangrove forest ecology. Wetl 37(4):603–613.

    Article  Google Scholar 

  • Gómez JF, Byrne ML, Hamilton J, Isla F (2017) Historical coastal evolution and dune vegetation in isla salamanca national park, colombia. J Coast Res 33(3):632–641.

    Google Scholar 

  • Google Earth Pro (2020) Imagery attributed to CNES/Airbus, Terra Metrics, and Maxar Technologies, used following attribution guidelines https://www.google.com/permissions/geoguidelines/attr-guide/

  • Gordon DM (1988) Disturbance to mangroves in tropical-arid Western Australia: hypersalinity and restricted tidal exchange as factors leading to mortality. J Arid Environ 15:117–145.

    Article  Google Scholar 

  • Harrington, RW, Harrington ES (1982) Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitos. Bull Mar Sci 32:523–531.

    Google Scholar 

  • Hirashi T, Harada K (2003) Greenbelt tsunami prevention in South-Pacific region. Rep Port Airport Res Inst 42:3–25.

    Google Scholar 

  • Horstman EM, Lundquist CJ, Bryan KR, Bulmer RH, Mullarney JC, Stokes DJ (2018) The dynamics of expanding mangroves in New Zealand. In: Makowski C, Finkl CW (eds) Threats to mangrove forests, Springer, Cham, p. 23–51.

    Chapter  Google Scholar 

  • Hutchings P, Saenger P (1987) Ecology of Mangroves. University of Queensland Press, St Lucia.

    Google Scholar 

  • Jimenez JA, Lugo AE, Cintron G (1985) Tree mortality in mangrove forests. Biotrop 17:177–185.

    Google Scholar 

  • Katharesan K, Rajendran N (2005) Coastal mangrove forests mitigates tsunami. Estuar Coast Shelf Sci 65:601–606.

    Article  Google Scholar 

  • Kemp AC, Vane CH, Khan NS, Ellison JC, Engelhart SE, Horton BP, Nikitina D, Smith SR, Rodrigues LJ, Moyer RP (2019) Testing the utility of geochemical proxies to reconstruct holocene coastal environments and relative sea level: a case study from Hungry Bay, Bermuda. Open Quat 5(5):1–8.

    Article  Google Scholar 

  • Kjerfve B (1990) Manual for investigation of hydrological processes in mangrove ecosystems. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina.

    Google Scholar 

  • Koh H, Teh SY, Kh’ng XY, Raja Barizan RS (2018) Mangrove forests: protection against and resilience to coastal disturbances. J Trop For Sci 30(5):446–460.

    Google Scholar 

  • Lewis RR, Brown BM, Flynn LL (2019) Methods and criteria for successful mangrove forest rehabilitation. In: Wolanski E, Cahoon D, Perillo GME (eds) Coastal wetlands: An ecosystem integrated approach, Elsevier Science, Amsterdam, p 863–887.

    Google Scholar 

  • Lewis RR, Brown B (2014) Ecological mangrove rehabilitation-a field manual for practitioners. Mangrove Action Project Indonesia, Blue Forests, Canadian International Development Agency and OXFAM, Gatineau, Quebec, Canada. http://mangroverestoration.com/.

  • Lincoln R, Boxshall G, Clark P (1982) Dictionary of ecology, evolution and systematics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lovelock CE, Feller IC, Reef R, Hickey S, Ball MC (2017) Mangrove dieback during fluctuating sea levels. Sci Rep 7(1):1–8.

    Article  CAS  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5(1):39–64.

    Article  Google Scholar 

  • Macmillan dictionary (2020) https://www.macmillandictionary.com/thesaurus-category/british/biological-processes.

  • Mahoney PC, Bishop MJ (2018) Are geomorphological typologies for estuaries also useful for classifying their ecosystems? Aquat Conserv 28(5):1200–1208.

    Article  Google Scholar 

  • Maritime Safety Queensland (2019) Queensland tide tables standard port tide times 2020. Department of Transport and Main Roads, State of Queensland.

    Google Scholar 

  • Mazda Y, Magi M, Kogo M, Hong PN (1997) Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangr Salt Marsh 1(2):127–135.

    Google Scholar 

  • Mazda Y, Parish F, Danielsen F, Imamura F (2007) Hydraulic functions of mangroves in relation to tsunamis. Mangr Sci 4(5):57–67.

    Google Scholar 

  • McSweeney SL, Kennedy DM, Rutherfurd ID, Stout JC (2017) Intermittently closed/open lakes and lagoons: Their global distribution and boundary conditions. Geomorph 292:142–152.

    Article  Google Scholar 

  • Naidoo G (1983) Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymnorrhiza. New Phytol 93:369–373.

    Article  Google Scholar 

  • Odum EP (1972) Ecosystem theory in relation to man. In: Wiens JA (ed) Ecosystem structure and function, Oregon State University Press, Corvallis, p. 11–24.

    Google Scholar 

  • Oh RRY, Friess DA, Brown BM (2017) The role of surface elevation in the rehabilitation of abandoned aquaculture ponds to mangrove forests, Sulawesi, Indonesia. Ecol Engineer 100:325–334.

    Article  Google Scholar 

  • Ong WJ, Ellison JC (2021) A framework for the quantitative assessment of mangrove resilience. In: Friess D, Sidik F (eds) Dynamic sedimentary environments of mangrove coasts, Elsevier, Amsterdam, p. 513–538.

    Google Scholar 

  • Osland MJ, Day RH, Hall CT, Brumfield MD, Dugas JL, Jones WR (2017) Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology 98:125–137.

    Article  PubMed  Google Scholar 

  • Osland MJ, Day RH, Michot TC (2020) Frequency of extreme freeze events controls the distribution and structure of black mangroves (Avicennia germinans) near their northern range limit in coastal Louisiana. Divers Distrib 00:1–17. https://doi.org/10.1111/ddi.13119

    Article  CAS  Google Scholar 

  • Otero V, Quisthoudt K, Koedam N, Dahdouh-Guebas F (2016) Mangroves at their limits: Detection and area estimation of mangroves along the Sahara Desert Coast. Remote Sens 8:512. https://doi.org/10.3390/rs8060512

    Article  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Nam VN, Primavera JH, Salmo III SG, Sanciangco JC, Sukardjo S, Wang Y, Yong JWH (2010) The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS One 5(4): e10095. https://doi.org/10.1371/journal.pone.0010095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard DA, Hannan JC (1994) The ecological effects of structural flood mitigation works on fish habitats and fish communities in the lower Clarence River system of south-eastern Australia. Estuar 17:427–461.

    Article  Google Scholar 

  • Port Klang Malaysia Marine Information Handbook (2010) https://www.pka.gov.my/phocadownloadpap/information/marine/MARINE%20HANDBOOK.pdf.

  • Putman R, Warren SD (1984) Principles of ecology. Chapman and Hall, London.

    Google Scholar 

  • Ritter DF, Kochel C, Miller JR (2002) Process geomorphology. McGraw Hill, Dubuque.

    Google Scholar 

  • Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Mar Freshw Res 49:277–286.

    Article  CAS  Google Scholar 

  • Saenger P, Ragavan P, Sheue CR, López-Portillo J, Yong JWH, Mageswaran, T (2019) Mangrove biogeography of the Indo-Pacific. In: Gul B, Böer B, Khan M, Clüsener-Godt M, Hameed A (eds) Sabkha ecosystems, Springer, Cham, p. 379–400.

    Chapter  Google Scholar 

  • Sasmito SD, Kuzyakov Y, Lubis AA, Murdiyarso D, Hutley LB, Bachri S, Friess DA, Martius C, Borchard N (2020) Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 187:104414.

    Article  CAS  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461(7260):53–59.

    Google Scholar 

  • Scholander PF, van Dam L, Scholander SI (1955) Gas exchange in roots of mangroves. Amer J Bot 42(1):92–98.

    Article  CAS  Google Scholar 

  • Soerianegara I (1968) The causes of mortality of Bruguiera trees in the mangrove forest near Tjilatjap, Central Java. Rimba Ind 13:1–11.

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World Atlas of Mangroves. Earthscan, London and Washington, DC.

    Book  Google Scholar 

  • Srivastava J, Prasad V (2019) Evolution and paleobiogeography of mangroves. Mar Ecol 40(6):e12571.

    Google Scholar 

  • Steinke TD, Naidoo Y (1991) Respiration and net photosynthesis of cotyledons during establishment and early growth of propagules of the mangrove, Avicennia marina, at three temperatures. S Afr J Bot 57:171–174.

    Article  Google Scholar 

  • Tedford, M, Ellison, JC (2018) Analysis of river rehabilitation success, Pipers River, Tasmania. Ecol Indic 91:350–358.

    Google Scholar 

  • Tomlinson PB (2016) The botany of mangroves. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Turner RE, Lewis RR (1997) Hydrologic restoration of coastal wetlands. Wetl Ecol Manage 4:65–72.

    Google Scholar 

  • Valiela I, Pascual J, Giblin A, Barth-Jensen C, Martinetto P, Otter M, Stone T, Tucker J, Bartholomew M, Viana IG (2018) External and local controls on land-sea coupling assessed by stable isotopic signatures of mangrove producers in estuaries of Pacific Panama. Mar Env Res 137:133–144.

    Article  CAS  Google Scholar 

  • van Belzen J, van de Koppel J, Kirwan M, van der Wal D, Herman PMJ, Dakos V, Kefi S, Scheffer M, Guntenspergen GR, Bouma TJ (2017) Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat Commun 8:15811. https://doi.org/10.1038/ncomms15811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Stocken T, Wee AK, De Ryck DJ, Vanschoenwinkel B, Friess DA, Dahdouh-Guebas F, Simard M, Koedam N, Webb EL (2019) A general framework for propagule dispersal in mangroves. Biol Rev 94(4):1547–1575.

    Article  PubMed  Google Scholar 

  • Vermaat JE, Thampanya U (2006) Mangroves mitigate tsunami damage: A further response. Estuar Coast Shelf Sci 69:1–3.

    Article  Google Scholar 

  • Watson JG (1928) Mangrove forests of the Malay Peninsula. Malay For Rec 6:1–275.

    Google Scholar 

  • Waycott M, McKenzie LJ, Mellors JE, Ellison JC, Sheaves MT, Collier C, Schwarz AM, Webb A, Johnson JE, Payri CE (2011) Vulnerability of mangroves, seagrasses and intertidal flats in the tropical Pacific to climate change. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of fisheries and aquaculture in the Pacific to climate change, Secretariat of the Pacific Community, Noumea, p. 297–368.

    Google Scholar 

  • Yan YB, Duke NC, Sun M (2016) Comparative analysis of the pattern of population genetic diversity in three Indo-west Pacific Rhizophora mangrove species. Front Plant Sci 30(7):1434.

    Google Scholar 

  • Yanagisawa H, Koshimura S, Goto K, Miyagi T, Imamura F, Ruangrassamee A, Tanavud C (2009) The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis. Estuar Coast Shelf Sci 81:27–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna C. Ellison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ellison, J.C. (2021). Factors Influencing Mangrove Ecosystems. In: Rastogi, R.P., Phulwaria, M., Gupta, D.K. (eds) Mangroves: Ecology, Biodiversity and Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2494-0_4

Download citation

Publish with us

Policies and ethics