Skip to main content
Log in

Right heart failure in left heart disease: imaging, functional, and biochemical aspects of right ventricular dysfunction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

For decades, cardiologists have largely underestimated the role of the right heart in heart failure due to left heart disease. Nowadays, the importance of evaluating right ventricular (RV) structure and function in left heart failure is well documented and this concept has been emphasized in the most recent heart failure guidelines. However, several relevant questions remain unanswered such as the following: (a) which imaging technique (standard or 3D echocardiography or strain imaging or cardiac magnetic resonance) and, more, which parameters should be used to grade the severity of RV dysfunction? (b) do less widespread and less applied diagnostic tools such as cardiopulmonary stress testing and bioelectrical impedance analysis play a role in this field? (c) are there specific biochemical aspects of RV failure? (d) why notion of pathophysiology of heart and lung interaction are so well appreciated at an academic level but are not applied in the clinical setting? The present review has been prepared by the Heart Failure (HF) working group of the Italian Society of Cardiology and its main objective is to improve our understanding on RV dysfunction in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117(11):1436–1448

    Article  PubMed  Google Scholar 

  2. McDonagh TA, Metra M, Ma Adamo, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, ESC Scientific Document Group et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  PubMed  Google Scholar 

  3. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1–39):e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  Google Scholar 

  4. Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, Campana C, Gavazzi A, Tavazzi L (2000) Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 85:837–842. https://doi.org/10.1016/s0002-9149(99)00877-2

    Article  CAS  PubMed  Google Scholar 

  5. Kjaergaard J, Akkan D, Iversen KK, Køber L, Torp-Pedersen C, Hassager C (2007) Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail 9:610–616. https://doi.org/10.1186/1476-7120-7-51

    Article  PubMed  Google Scholar 

  6. Dini FL, Demmer RT, Simioniuc A, Morrone D, Donati F, Guarini G, Orsini E, Caravelli P, Marzilli M, Colombo PC (2012) Right ventricular dysfunction is associated with chronic kidney disease and predicts survival in patients with chronic systolic heart failure. Eur J Heart Fail 14:287–294. https://doi.org/10.1093/eurjhf/hfr176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghio S, Guazzi M, Scardovi AB, Klersy C, Clemenza F, Carluccio E, Temporelli PL, Rossi A, Faggiano P, Traversi E, Vriz O, Dini FL, all investigators (2017) Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 19(7):873–879. https://doi.org/10.1002/ejhf.664

    Article  CAS  PubMed  Google Scholar 

  8. Dini FL, Carluccio E, Simioniuc A, Biagioli P, Reboldi G, Galeotti GG, Raineri C, Gargani L, Scelsi L, Mandoli GE, Cannito A, Rossi A, Temporelli PL, Ghio S (2016) Network Labs Ultrasound (NEBULA) in Heart Failure Study Group. Right ventricular recovery during follow-up is associated with improved survival in patients with chronic heart failure with reduced ejection fraction. Eur J Heart Fail 18(12):1462–1471. https://doi.org/10.1002/ejhf.639

    Article  PubMed  Google Scholar 

  9. Ghio S, Temporelli PL, Klersy C, Simioniuc A, Girardi B, Scelsi L, Rossi A, Cicoira M, Tarro Genta F, Dini FL (2013) Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail 15:408–414. https://doi.org/10.1093/eurjhf/hfs208

    Article  PubMed  Google Scholar 

  10. Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, Temporelli PL, Arena R (2013) Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol 305(9):H1373–H1381. https://doi.org/10.1152/ajpheart.00157.2013

    Article  CAS  PubMed  Google Scholar 

  11. Kim H, Jung C, Yoon HJ, Park HS, Cho YK, Nam CW, Hur SH, Kim YN, Kim KB (2012) Prognostic value of tricuspid annular tissue Doppler velocity in heart failure with atrial fibrillation. J Am Soc Echocardiogr 25(4):436–443. https://doi.org/10.1016/j.echo.2011.12.019

    Article  PubMed  Google Scholar 

  12. de Groote P, Fertin M, Goéminne C, Petyt G, Peyrot S, Foucher-Hossein C, Mouquet F, Bauters C, Lamblin N (2012) Right ventricular systolic function for risk stratification in patients with stable left ventricular systolic dysfunction: comparison of radionuclide angiography to echoDoppler parameters. Eur Heart J 33:2672–2679. https://doi.org/10.1093/eurheartj/ehs080

    Article  PubMed  Google Scholar 

  13. Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, McMurray JJ, Velazquez E, Califf R, Pfeffer MA, Solomon SD (2008) Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am J Cardiol 101(5):607–612. https://doi.org/10.1016/j.amjcard.2007.09.115

    Article  PubMed  Google Scholar 

  14. Haddad F, Couture P, Tousignant C, Denault AY (2009) The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology, and assessment. Anesth Analg 108:407–421. https://doi.org/10.1213/ane.0b013e31818f8623

    Article  PubMed  Google Scholar 

  15. Correale M, Totaro A, Ieva R, Brunetti ND, Di Biase M (2011) Time intervals and myocardial performance index by tissue Doppler imaging. Intern Emerg Med 6(5):393–402. https://doi.org/10.1007/s11739-010-0469-3

    Article  PubMed  Google Scholar 

  16. Gorcsan J III et al (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58(14). https://doi.org/10.1016/j.jacc.2011.06.038

  17. Rudski LG, Fine N (2018) Right ventricular function in Heart Failure. The long and short of free wall motion versus deformation imaging. Circ Cardiovasc Imaging 11. https://doi.org/10.1161/CIRCIMAGING.117.007396

  18. Carluccio E, Biagioli P, Lauciello R, Zuchi C, Mengoni A, Bardelli G, Alunni G, Gronda EG, Ambrosio G (2019) Superior Prognostic Value of Right Ventricular Free Wall Compared to Global Longitudinal Strain in Patients With Heart Failure. J Am Soc Echocardiogr 32(7):836–844.e1. https://doi.org/10.1016/j.echo.2019.02.011

    Article  PubMed  Google Scholar 

  19. Carluccio E et al (2018) Prognostic value of right ventricular dysfunction in heart failure with reduced EF. Superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ Cardiovasc Imaging 11. https://doi.org/10.1161/CIRCIMAGING.117.006894

  20. Houard L, Benaets M-B, Ravenstein CDMD, Rousseau MF, Ahn SA, Amzulescu M-S, Roy C, Slimani A, Vancraeynest D, Pasquet A et al (2019) Additional Prognostic Value of 2D Right Ventricular Speckle-Tracking Strain for Prediction of Survival in Heart Failure and Reduced Ejection Fraction. A Comparative Study with Cardiac Magnetic Resonance. JACC Cardiovasc Imaging 12:2373–2385. https://doi.org/10.1016/j.jcmg.2018.11.028

    Article  PubMed  Google Scholar 

  21. Bosch L et al (2017) Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail 19:1664–1671. https://doi.org/10.1002/ejhf.873

    Article  CAS  PubMed  Google Scholar 

  22. Chriqui LE, Monney P, Kirsch M, Tozzi P (2021) Prediction of right ventricular failure after left ventricular assist device implantation in patients with heart failure: a meta-analysis comparing echocardiographic parameters. Interact Cardiovasc Thorac Surg 33(5):784–792. https://doi.org/10.1093/icvts/ivab177 (PMID: 34368839)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nagata Y, Wu VC, Kado Y et al (2017) Prognostic value of right ventricular ejection fraction assessed by transthoracic 3D echocardiography. Circ Cardiovasc Imaging 10(2):e005384. https://doi.org/10.1161/CIRCIMAGING.116.005384

    Article  PubMed  Google Scholar 

  24. Magunia H, Dietrich C, Langer HF, Schibilsky D, Schlensak C, Rosenberger P, Nowak-Machen M (2018) 3D Echocardiography Derived Right Ventricular Function is Associated with Right Ventricular Failure and Mid-Term Survival After Left Ventricular Assist Device Implantation. Int J Cardiol 1(272):348–355. https://doi.org/10.1016/j.ijcard.2018.06.026

    Article  Google Scholar 

  25. Dellegrottaglie S, Ostenfeld E, Sanz J, Scatteia A, Perrone-Filardi P, Bossone E (2018) Imaging the Right Heart-Pulmonary Circulation Unit: The Role of MRI and Computed Tomography. Heart Fail Clin 14(3):377–391. https://doi.org/10.1016/j.hfc.2018.03.004

    Article  PubMed  Google Scholar 

  26. Gulati A, Ismail TF, Jabbour A, Alpendurada F, Guha K, Ismail NA et al (2013) The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation 128:1623–1633. https://doi.org/10.1161/CIRCULATIONAHA.113.002518

    Article  PubMed  Google Scholar 

  27. Aschauer S, Kammerlander AA, Zotter-Tufaro C, Ristl R, Pfaffenberger S, Bachmann A, Duca F, Marzluf BA, Bonderman D, Mascherbauer J (2016) The right heart in heart failure with preserved ejection fraction: insights from cardiac magnetic resonance imaging and invasive haemodynamics. Eur J Heart Fail 18(1):71–80. https://doi.org/10.1002/ejhf.418

    Article  PubMed  Google Scholar 

  28. Pueschner A, Chattranukulchai P, Heitner JF, Shah DJ, Hayes B, Rehwald W, Parker MA, Kim HW, Judd RM, Kim RJ, Klem I (2017) The Prevalence, Correlates, and Impact on Cardiac Mortality of Right Ventricular Dysfunction in Nonischemic Cardiomyopathy. JACC Cardiovasc Imaging 10(10 Pt B):1225–1236. https://doi.org/10.1016/j.jcmg.2017.06.013

    Article  PubMed  Google Scholar 

  29. Di Marco A, Anguera I, Schmitt M, Klem I, Neilan TG, White JA et al (2017) Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail 5:28–38. https://doi.org/10.1016/j.jchf.2016.09.017

    Article  PubMed  Google Scholar 

  30. Guaricci AI, Masci PG, Lorenzoni V, Schwitter J, Pontone G (2018) CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy international registry: Design and rationale of the DERIVATE study. Int J Cardiol 15(261):223–227. https://doi.org/10.1016/j.ijcard.2018.03.043

    Article  Google Scholar 

  31. Vanderpool RR, Pinsky MR, Naeije R, Deible C, Kosaraju V, Bunner C, Mathier MA, Lacomis J, Champion HC, Simon MA (2015) RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart 101(1):37–43. https://doi.org/10.1136/heartjnl-2014-306142

    Article  PubMed  Google Scholar 

  32. Muscogiuri G, Fusini L, Ricci F, Sicuso R, Guglielmo M, Baggiano A, Gasperetti A, Casella M, Mushtaq S, Conte E, Annoni A, Formenti A, Mancini ME, Babbaro M, Mollace R, Collevecchio A, Scafuri S, Kukavica D, Andreini D, Basso C, Rizzo S, De Gaspari M, Priori S, Dello Russo A, Tondo C, Pepi M, Sommariva E, Rabbat M, Guaricci AI, Pontone G (2021) Additional diagnostic value of cardiac magnetic resonance feature tracking in patients with biopsy-proven arrhythmogenic cardiomyopathy. Int J Cardiol 339:203–210. https://doi.org/10.1016/j.ijcard.2021.06.052

    Article  PubMed  Google Scholar 

  33. Kinoshita M, Inoue K, Higashi H, Akazawa Y, Sasaki Y, Fujii A, Uetani T, Inaba S, Aono J, Nagai T, Nishimura K, Ikeda S, Yamaguchi O (2020) Impact of right ventricular contractile reserve during low-load exercise on exercise intolerance in heart failure. ESC Heart Fail 7(6):3810–3820. https://doi.org/10.1002/ehf2.12968

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guazzi M, Villani S, Generati G, Ferraro OE, Pellegrino M, Alfonzetti E, Labate V, Gaeta M, Sugimoto T, Bandera F (2016) Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes. JACC Heart Fail 4(8):625–635. https://doi.org/10.1016/j.jchf.2016.03.007

    Article  PubMed  Google Scholar 

  35. Gavazzi A, Ghio S, Scelsi L, Campana C, Klersy C, Serio A, Raineri C, Tavazzi L (2003) Response of the right ventricle to acute pulmonary vasodilation predicts the outcome in patients with advanced heart failure and pulmonary hypertension. Am Heart J 145(2):310–316. https://doi.org/10.1067/mhj.2003.146

    Article  PubMed  Google Scholar 

  36. Ghio S, Crimi G, Houston B, Montalto C, Garascia A, Boffini M, Temporelli PL, La Rovere MT, Pacileo G, Panneerselvam K, Santolamazza C, D’angelo L, Moschella M, Scelsi L, Marro M, Masarone D, Ameri P, Rinaldi M, Guazzi M, D’alto M, Tedford RJ (2021) Nonresponse to Acute Vasodilator Challenge and Prognosis in Heart Failure With Pulmonary Hypertension. J Card Fail 27(8):869–876. https://doi.org/10.1016/j.cardfail.2021.01.021

    Article  PubMed  Google Scholar 

  37. D’Alto M, Romeo E, Argiento P, D’Andrea A, Vanderpool R, Correra A, Bossone E, Sarubbi B, Calabrò R, Russo MG, Naeije R (2013) Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol 168(4):4058–4062. https://doi.org/10.1016/j.ijcard.2013.07.005

    Article  PubMed  Google Scholar 

  38. Galiè N, Humbert M, Vachiery JL et al (2015) ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Respir J 46:903–975. https://doi.org/10.1183/13993003.01032-2015

    Article  CAS  PubMed  Google Scholar 

  39. D’Alto M, Romeo E, Argiento P, Motoji Y, Correra A, Di Marco GM, Iacono AM, Barracano R, D’Andrea A, Rea G, Sarubbi B, Russo MG, Naeije R (2017) Clinical Relevance of Fluid Challenge in Patients Evaluated for Pulmonary Hypertension. Chest 151(1):119–126. https://doi.org/10.1016/j.chest.2016.08.1439

    Article  PubMed  Google Scholar 

  40. Kormos RL, Teuteberg JJ, Pagani FD et al (2010) Right ventricular failure in patients with the HeartMate II continuous- flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139:1316–1324. https://doi.org/10.1016/j.jtcvs.2009.11.020

    Article  PubMed  Google Scholar 

  41. Khalil SF, Mohktar MS, Ibrahim F (2014) The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Switzerland) 14(6):10895–10928. https://doi.org/10.3390/s140610895

    Article  Google Scholar 

  42. Massari F, Scicchitano P, Ciccone MM, Caldarola P, Aspromonte N, Iacoviello M et al (2019) Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition 61:56–60. https://doi.org/10.1016/j.nut.2018.10.028

    Article  PubMed  Google Scholar 

  43. Di Somma S, Lalle I, Magrini L, Russo V, Navarin S, Castello L et al (2014) Additive diagnostic and prognostic value of Bioelectrical Impedance Vector Analysis (BIVA) to brain natriuretic peptide ‘grey-zone’ in patients with acute heart failure in the emergency department. Eur Hear J Acute Cardiovasc Care 3(2):167–175. https://doi.org/10.1177/2048872614521756

    Article  Google Scholar 

  44. Massari F, Iacoviello M, Scicchitano P, Mastropasqua F, Guida P, Riccioni G et al (2016) Accuracy of bioimpedance vector analysis and brain natriuretic peptide in detection of peripheral edema in acute and chronic heart failure. Heart Lung J Acute Crit Care 45(4):319–326. https://doi.org/10.1016/j.hrtlng.2016.03.008

    Article  Google Scholar 

  45. Gastelurrutia P, Nescolarde L, Rosell-Ferrer J, Domingo M, Ribas N, Bayes-Genis A (2011) Bioelectrical impedance vector analysis (BIVA) in stable and non-stable heart failure patients: A pilot study. Int J Cardiol 146(2):262–264. https://doi.org/10.1016/j.ijcard.2010.10.072

    Article  PubMed  Google Scholar 

  46. Massari F, Scicchitano P, Iacoviello M, Passantino A, Guida P, Sanasi M et al (2020) Multiparametric approach to congestion for predicting long-term survival in heart failure. J Cardiol 75(1):47–52. https://doi.org/10.1016/j.jjcc.2019.05.017

    Article  PubMed  Google Scholar 

  47. Arena R, Ozemek C (2019) Intracardiac multimorbidity: assessing right ventricular function in left-sided heart failure through cardiopulmonary exercise testing. Expert Rev Cardiovasc Ther 17(5):331–333. https://doi.org/10.1080/14779072.2019.1585808

    Article  CAS  PubMed  Google Scholar 

  48. Methvin AB, Owens AT, Emmi AG, Allen M, Wiegers SE, Dries DL, Margulies KB, Forfia PR (2011) Ventilatory inefficiency reflects right ventricular dysfunction in systolic heart failure. Chest 139(3):617–625. https://doi.org/10.1378/chest.10-0318

    Article  PubMed  Google Scholar 

  49. Teramoto K, Sengelov M, West E, Santos M, Nadruz W, Skali H, Shah AM (2020) Association of pulmonary hypertension and right ventricular function with exercise capacity in heart failure. ESC Heart Fail 7(4):1635–1644. https://doi.org/10.1002/ehf2.12717

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guazzi M, Cahalin LP, Arena R (2013) Cardiopulmonary exercise testing as a diagnostic tool for the detection of left-sided pulmonary hypertension in heart failure. J Card Fail 19(7):461–467. https://doi.org/10.1016/j.cardfail.2013.05.005

    Article  PubMed  Google Scholar 

  51. Lim HS, Theodosiou M (2014) Exercise ventilatory parameters for the diagnosis of reactive pulmonary hypertension in patients with heart failure. J Card Fail 20(9):650–657. https://doi.org/10.1016/j.cardfail.2014.06.355

    Article  PubMed  Google Scholar 

  52. Taylor BJ, Smetana MR, Frantz RP, Johnson BD (2015) Submaximal Exercise Pulmonary Gas Exchange in Left Heart Disease Patients With Different Forms of Pulmonary Hypertension. J Card Fail 21(8):647–55. https://doi.org/10.1016/j.cardfail.2015.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhong X, Tang J, Jiang R, Yuan P, Zhao Q, Gong S, Liu J, Wang L (2021) The predictive value of minute ventilation versus carbon dioxide production in pulmonary hypertension associated with left heart disease. Ann Transl Med 9(4):351. https://doi.org/10.21037/atm-21-366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gargiulo P, Apostolo A, Perrone-Filardi P, Sciomer S, Palange P, Agostoni P (2014) A non invasive estimate of dead space ventilation from exercise measurements. PLoS One 9(1):e87395. https://doi.org/10.1371/journal.pone.0087395

  55. Hussain I, Mohammed SF, Forfia PR, Lewis GD, Borlaug BA, Gallup DS, Redfield MM (2016) Impaired Right Ventricular-Pulmonary Arterial Coupling and Effect of Sildenafil in Heart Failure With Preserved Ejection Fraction: An Ancillary Analysis From the Phosphodiesterase-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) Trial. Circ Heart Fail 9(4):e002729. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002729

    Article  CAS  PubMed  Google Scholar 

  56. Salvioni E, Corra U, Piepoli M et al (2020) Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction. ESC Heart Fail 7:371–380. https://doi.org/10.1002/ehf2.12582

    Article  PubMed  PubMed Central  Google Scholar 

  57. Apostolo A, Laveneziana P, Palange P et al (2015) Impact of chronic obstructive pulmonary disease on exercise ventilatory efficiency in heart failure. Int J Cardiol 189:134–140. https://doi.org/10.1016/j.ijcard.2015.03.422

    Article  PubMed  Google Scholar 

  58. Pradhan NM, Mullin C, Poor HD (2020) Biomarkers and Right Ventricular Dysfunction. Crit Care Clin 36:141–153. https://doi.org/10.1016/j.ccc.2019.08.011

    Article  PubMed  Google Scholar 

  59. Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C, Emdin M (2022) Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev 27(2):625–643. https://doi.org/10.1007/s10741-021-10105

    Article  CAS  PubMed  Google Scholar 

  60. Lankeit M, Jiménez D, Kostrubiec M, Dellas C, Hasenfuss G, Pruszczyk P, Konstantinides S (2011) Predictive Value of the High-Sensitivity Troponin T Assay and the Simplified Pulmonary Embolism Severity Index in Hemodynamically Stable Patients With Acute Pulmonary Embolism. Circulation 124:2716–2724. https://doi.org/10.1161/CIRCULATIONAHA.111.051177

    Article  CAS  PubMed  Google Scholar 

  61. Bajaj A, Rathor P, Sehgal V, Kabak B, Shetty A, Al Masalmeh O, Hosur S (2015) Prognostic Value of Biomarkers in Acute Non-massive Pulmonary Embolism: A Systematic Review and Meta-analysis. Lung 193:639–651. https://doi.org/10.1007/s00408-015-9752-4

    Article  CAS  PubMed  Google Scholar 

  62. Odeh M, Sabo E, Oliven A (2006) Circulating levels of tumor necrosis factor-alpha correlate positively with severity of peripheral oedema in patients with right heart failure. Eur J Heart Fail 8:141–146. https://doi.org/10.1016/j.ejheart.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  63. Yang T, Li Z-N, Chen G, Gu Q, Ni X-H, Zhao Z-H, Ye J, Meng X-M, Liu Z-H, Xiong C-M, He J-G (2014) Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung J Cardiopulm Acute Care 43:322–327. https://doi.org/10.1016/j.hrtlng.2014.04.016

    Article  Google Scholar 

  64. Prins KW, Archer SL, Pritzker M, Rose L, Weir EK, Sharma A, Thenappan T (2018) Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 37:376–384. https://doi.org/10.1016/j.healun.2017.08.011

    Article  Google Scholar 

  65. Llucià-Valldeperas A, van Wezenbeek J, Goumans MJ, de Man FS (2021) The battle of new biomarkers for right heart failure in pulmonary hypertension: is the queen of hearts NT-proBNP defeated at last? Eur Respir J 57(4):2004277. https://doi.org/10.1183/13993003.04277-2020

    Article  CAS  PubMed  Google Scholar 

  66. Keranov S, Dörr O, Jafari L, Troidl C, Liebetrau C, Kriechbaum S, Keller T, Voss S, Bauer T, Lorenz J, Richter MJ, Tello K, Gall H, Ghofrani HA, Mayer E, Wiedenroth CB, Guth S, Lörchner H, Pöling J, Chelladurai P, Pullamsetti SS, Braun T, Seeger W, Hamm CW, Nef H (2021) CILP1 as a biomarker for right ventricular maladaptation in pulmonary hypertension. Eur Respir J 57:1901192. https://doi.org/10.1183/13993003.01192-2019

    Article  CAS  PubMed  Google Scholar 

  67. Batkai S, Bär C, Thum T (2017) MicroRNAs in right ventricular remodelling. Cardiovasc Res 113:1433–1440. https://doi.org/10.1093/cvr/cvx153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Stefano Ghio, Dr Palazzuoli, and Dr Correale had the idea, developed the conceptualization of the article, and prepared the final version of the manuscript; all authors performed the literature search and evaluation, prepared a first draft of a specific part of the manuscript, revised the entire manuscript critically for important intellectual content, and finally approved the manuscript submitted.

Corresponding author

Correspondence to Stefano Ghio.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghio, S., Acquaro, M., Agostoni, P. et al. Right heart failure in left heart disease: imaging, functional, and biochemical aspects of right ventricular dysfunction. Heart Fail Rev 28, 1009–1022 (2023). https://doi.org/10.1007/s10741-022-10276-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10276-0

Keywords

Navigation