Skip to main content

Advertisement

Log in

Angiogenic growth factors in myocardial infarction: a critical appraisal

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In the recent past, substantial advances have been made in the treatment of myocardial infarction (MI). Despite the impact of these positive developments, MI remains to be a leading cause of morbidity as well as mortality. An interesting hypothesis is that the development of new blood vessels (angiogenesis) or the remodeling of preexisting collaterals may form natural bypasses that could compensate for the occlusion of an epicardial coronary artery. A number of angiogenic factors are proven to be elicited during MI. Exogenous supplementation of these growth factors either in the form of recombinant protein or gene would enhance the collateral vessel formation and thereby improve the outcome after MI. The aim of this review is to describe the nature and potentials of different angiogenic factors, their expression, their efficacy in animal studies, and clinical trials pertaining to MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR (2016) Executive summary: heart disease and stroke statistics—2016 update. A Report from the American Heart Association Circulation 133:447–454

    PubMed  Google Scholar 

  2. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A (2010) Growing epidemic of coronary heart disease in low and middle income countries. Curr Probl Cardiol 35:72–115

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jugdutt BI (2012) Ischemia/infarction. Heart Fail Clin 8:43–51

    Article  PubMed  Google Scholar 

  4. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  5. Folkman J (1995) Tumor angiogenesis. In: Mendelsohn J, Howley P, Israel M, Liotta L (eds) The molecular basis of cancer. WB Saunders, Philadelphia, pp 206–232

    Google Scholar 

  6. Markkanen JE, Rissanen TT, Kivela A, Yla-Herttuala S (2005) Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart—gene therapy. Cardiovasc Res 65:656–664

    Article  CAS  PubMed  Google Scholar 

  7. Bougioukas I, Didilis V, Ypsilantis P, Giatromanolaki A, Sivridis E, Lialiaris T, Mikroulis D, Simopoulos C, Bougioukas G (2007) Intramyocardial injection of low dose basic fibroblast growth factor or vascular endothelial growth factor induces angiogenesis in the infarcted rabbit myocardium. Cardiovasc Pathol 16:63–68

    Article  CAS  PubMed  Google Scholar 

  8. Pirolli TJ (2003) Treatment of experimental heart failure with hepatocyte growth factor. PennScience 2:22–27

    Google Scholar 

  9. Edelberg JM, Lee SH, Kaur M, Tang L, Feirt NM, McCabe S, Bramwell O, Wong SC, Hong MK (2002) Platelet derived endothelial cell growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 105:608–613

    Article  CAS  PubMed  Google Scholar 

  10. Yanagisawa Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C (1992) Salvage of infarcted myocardium by angiogenic action of fibroblast growth factor. Science 257:1401–1403

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Tanaka K, Ihaya A, Fujibayashi Y, Takamatsu S, Morioka K, Sasaki M, Uesaka T, Kimura T, Yamada N, Tsuda T, Chiba Y (2005) Gene therapy for chronic myocardial ischemia using platelet-derived endothelial cell growth factor in dogs. Am J Physiol Heart Circ Physiol 288:H408–H415

    Article  CAS  PubMed  Google Scholar 

  12. Maulik N, Thirunavukkarasu M (2008) Growth factors and cell therapy in myocardial regeneration. J Mol Cell Cardiol 44:219–227

    Article  CAS  PubMed  Google Scholar 

  13. Lewis BS, Flugelman MY, Weisz A, Keren-Tal I, Schaper W (1997) Angiogenesis by gene therapy: a new horizon for myocardial revascularization? Cardiovasc res 35:490–497

    Article  CAS  PubMed  Google Scholar 

  14. Freedman SB, Isner JM (2002) Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 136:54–71

    Article  PubMed  Google Scholar 

  15. Rivard A, Silver M, Chen D, Murohara T, Kearney M, Magner M, Isner JM (1999) Age-dependent impairment of angiogenesis. Circulation 99:111–120

    Article  CAS  PubMed  Google Scholar 

  16. Schultz A, Lavie L, Hochberg I, Beyar R, Stone T, Skorecki K, Lavie P, Roguin A, Levy AP (1999) Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100:547–552

    Article  CAS  PubMed  Google Scholar 

  17. Isner JM (2000) Tissue responses to ischemia: local and remote responses for preserving perfusion of ischemic muscle. J Clin Invest 106:615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujii H, Xun Z, Li S, Wu J, Fazek S, Weisel R, Rakowski H, Lindner J, Li R (2009) Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging 2:869–679

    Article  PubMed  Google Scholar 

  19. Engler DA (1996) Use of vascular endothelial growth factor for therapeutic angiogenesis. Circulation 94:1496–1498

    Article  CAS  PubMed  Google Scholar 

  20. Neufeld G, Cohen T, Genrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  21. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  CAS  PubMed  Google Scholar 

  22. Conn G, Soderman DD, Schaeffer MT, Wile M, Hatcher VB, Thomas KA (1990) Purification of a glycoprotein vascular endothelial cell mitogen from a rat glioma-derived cell line. Proc Natl Acad Sci 87:1323–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Semenza GL, Agani G, Iyer N, Jiang BH, Leung S, Wiener C, Yu A (1998) Hypoxia inducible factor-1: from molecular biology to cardiopulmonary physiology. Chest 114:40S–45S

    Article  CAS  PubMed  Google Scholar 

  24. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family—identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    Article  CAS  PubMed  Google Scholar 

  25. Carmeliet P (1999) Basic concepts of (myocardial) angiogenesis: role of vascular endothelial growth factor and angiopoietin. Curr Interv Cardiol rep 1:322–335

    CAS  PubMed  Google Scholar 

  26. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804

    Article  CAS  PubMed  Google Scholar 

  27. Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, Symes JF (2000) Mobilization of endothelial progenitor cells following gene therapy with VEGF 165 in patients with inoperable coronary disease. Ann Thorac Surg 70:829–834

    Article  CAS  PubMed  Google Scholar 

  28. Korpisalo P, Karvinen H, Rissanen TT, Kilpijoki J, Marjomaki V, Baluk P, McDonald DM, Cao Y, Eriksson U, Alitalo K, Yia Herttuala S (2008) Vascular endothelial growth factor-A and platelet derived growth factor-B combination gene therapy prolongs angiogenic effects via recruitment of interstitial mononuclear cells and paracrine effects rather than improved pericyte coverage of angiogenic vessels. Circ res 103:1092–1099

    Article  CAS  PubMed  Google Scholar 

  29. Furlani AP, Kalil RA, Castro I, Cañedo-Delgado A, Barra M, Prates PR, Sant'Anna RT, Nesralla IA (2009) Effects of therapeutic angiogenesis with plasmid VEGF165 on ventricular function in a canine model of chronic myocardial infarction. Rev Bras Cir Cardiovasc 24:143–149

    Article  PubMed  Google Scholar 

  30. Lee RJ, Springer ML, Blanco-Boss W, Shaw R, Ursell PC (2000) Blau HM VEGF gene delivery to myocardium: deleterious effects of unregulated overexpression. J Am Coll Cardiol 35:306A

    Google Scholar 

  31. Wang B, Cheheltani R, Rosano J, Crabbe DL, Kiani MF (2013) Targeted delivery of VEGF to treat myocardial infarction. Adv Exp Med Biol 765:307–314

    Article  CAS  PubMed  Google Scholar 

  32. Awada HK, Johnson NR, Wang Y (2015) Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release 207:7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Shi C, Hou X, Zhao Y, Chen B, Tan B, Deng Z, Li Q, Liu J, Xiao Z, Miao Q, Dai J (2015) Modified VEGF targets the ischemic myocardium and promotes functional recovery after myocardial infarction. J Control Release 213:27–35

    Article  CAS  PubMed  Google Scholar 

  35. Henry TD, Abraham JA (2000) Review of preclinical and clinical results with vascular endothelial growth factors for therapeutic angiogenesis. Curr Interv Cardiol Rep 2:228–241

    CAS  PubMed  Google Scholar 

  36. Henry TD, Rocha-Sin K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Losordo DW, Hendel RC, Bonow RO, Eppler SM, Zioncheck TF, Holmgren EB, McCluskey ER (2001) Intracoronary administration of recombinant human vascular endothelial growth factor (rhVEGF) to patients with coronary artery disease. Am Heart J 142:872–880

    Article  CAS  PubMed  Google Scholar 

  37. Henry TD, Annex BH, Azrin MA, McKendall GR, Willerson JT, Hendel RC, Giordano F, Klein R, Gibson M, Berman DS, Luce CA, McCluskey ER (1999) Final results of the VIVA trial of rhVEGF for human therapeutic angiogenesis (abstract). Circulation 100:I-476

    Google Scholar 

  38. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial: vascular endothelial growth factor in ischemia or vascular angiogenesis. Circulation 107:1359–1365

    Article  CAS  PubMed  Google Scholar 

  39. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, Schatz RA, Asahara T, Isner JM, Kuntz RE (2002) Phase 1/2 placebo-controlled, double-blind, dose escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105:2012–2018

    Article  CAS  PubMed  Google Scholar 

  40. Vale PR, Losordo DW, Milliken CE, McDonald MC, Ravelin LM, Curry CM, Esakof DD, Maysky M, Symes JF, Isner JM (2001) Randomized, single-blind placebo-controlled pilot study of catheter based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103:2138–2143

    Article  CAS  PubMed  Google Scholar 

  41. Vale PR, Milliken CE, Fortuin D, Schatz RA, Esakof DD, Maysky M, Symes JF, Losordo DW (2000) Effective gene transfer of ph VEGF-2 for therapeutic angiogenesis in chronic myocardial ischemia as assessed by NOGA left ventricular electromechanical mapping (abstract). Circulation 102:II-689

    Article  Google Scholar 

  42. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100:468–474

    Article  CAS  PubMed  Google Scholar 

  43. Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A, Vanninen E, Musalo H, Kauppila E, Simula S, Narvanen O, Rantala A, Peuhkurinen K, Nieminen MS, Laakso M, Yla-Herttuala Y (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor Gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia. Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107:2677–2683

    Article  CAS  PubMed  Google Scholar 

  44. Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Ruzyllo W, Bøtker HE, Dudek D, Drvota V, Hesse B, Thuesen L, Blomberg P, Gyöngyösi M, Sylvén C (2005) Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris a randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol 45:982–988

    Article  CAS  PubMed  Google Scholar 

  45. Gyöngyösi M, Khorsand A, Zamini S, Sperker W, Strehblow C, Kastrup J, Jorgensen E, Hesse B, Tägil K, Bøtker HE, Ruzyllo W, Teresiñska A, Dudek D, Hubalewska A, Rück A, Nielsen SS, Graf S, Mundigler G, Novak J, Sochor H, Maurer G, Glogar D, Sylven C (2005) NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation 112:I-157–I-165

    Article  Google Scholar 

  46. Bokeriya LA, Golukhova EZ, Eremeeva MV, Aslanidi IP, Merzlyakov VY, Georgiev GP, Kiselev SL, Berishvili II, Vakhromeeva MN, Serov RA, Artyukhina TV, Basarab YS, Polyakova ES, Lukashkin MA (2005) Use of human VEGF(165) gene for therapeutic angiogenesis in coronary patients: first results. Bull Exp Biol Med 140:106–112

    Article  CAS  PubMed  Google Scholar 

  47. Gao F, He T, Wang HB, Yu SQ, Yi DH, Liu WY, Cai Z (2007) A promising strategy for the treatment of ischemic heart disease: mesenchymal stem cell mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol 23:891–898

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hagikura K, Fukuda N, Yokoyama S, Yuxin L, Kusumi Y, Matsumoto T, Ikeda Y, Kunimoto S, Takayama T, Jumabay M, Mitsumata M, Saito S, Hirayama A, Mugishima H (2010) Low invasive angiogenic therapy for myocardial infarction by retrograde transplantation of mononuclear cells expressing the VEGF gene. Int J Cardiol 142:56–64

    Article  PubMed  Google Scholar 

  49. Deuse T, Peter C, Fedak WM, Doyle T, Reichenspurner H, Zimmermann WH, Eschenhagen T, Stein W, Wu JC, Robbins RC, Schrepfer S (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120(11 Suppl):S247–S254

    Article  CAS  PubMed  Google Scholar 

  50. Esch F, Ueno N, Baird A, Hill F, Denoroy L, Ling N, Gospodarowicz D, Guillemin R (1985) Primary structure of bovine brain acidic fibroblast growth factor. Biochem Biophys Res Commun 133:554–562

    Article  CAS  PubMed  Google Scholar 

  51. Folkman J, Klagsburn M (1987) Angiogenic factors. Science 235:442–447

    Article  CAS  PubMed  Google Scholar 

  52. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss S, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein J (1995) Hypoxia mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Nat Acad Sci USA 92:4606–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R, Epstein SE, Unger EF (1991) Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ res 69:76–85

    Article  CAS  PubMed  Google Scholar 

  54. Gospodarowicz D (1989) Fibroblast growth factor. Crit rev Oncog 1:1–26

    CAS  PubMed  Google Scholar 

  55. Mergia A, Eddy R, Abraham JA, Fiddes JC, Shows TB (1986) The genes or basic and acidic fibroblast growth factors are on different human chromosomes. Biochem Biophys Res Commun 138:644–651

    Article  CAS  PubMed  Google Scholar 

  56. Florkiewicz RZ, Sommer A (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci U S a 86:3978–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wadzinski MG, Folkman J, Sasse J, Devey K, Ingber D, Klagsbrun M (1987) Heparin-binding angiogenesis factors: detection by immunological methods. Clin Physiol Biochem 5:200–209

    CAS  PubMed  Google Scholar 

  58. Klagsbrun M (1989) The fibroblast growth factor family: structural and biological properties. Prog Growth Factor Res 1:207–235

    Article  CAS  PubMed  Google Scholar 

  59. Xu X, Weinstein M, Li C, Deng C (1999) Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res 296:33–43

    Article  CAS  PubMed  Google Scholar 

  60. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109:2487–2491

    Article  PubMed  Google Scholar 

  61. Goto F, Goto K, Weindel K, Folkman J (1993) Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Investig 69:508–517

    CAS  PubMed  Google Scholar 

  62. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92(Suppl 9):II365–II371

    Article  CAS  PubMed  Google Scholar 

  63. Felmeden DC, Blann AD, Lip GYH (2003) Angiogenesis: basic pathophysiology and implications for disease. Eur Heart J 24:586–603

    Article  CAS  PubMed  Google Scholar 

  64. Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y (2011) Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int J Cardiol 152:307–313

    Article  PubMed  Google Scholar 

  65. Goncalves LM (2000) Angiogenic growth factors: potential new treatment for acute myocardial infarction? Cardiovasc Res 45:294–302

    Article  CAS  PubMed  Google Scholar 

  66. Nakajima H, Sakakibara Y, Tambara K, Iwakura A, Doi K, Marui A, Ueyama K, Ikeda T, Tabata Y, Komeda M (2004) Therapeutic angiogenesis by the controlled release of basic fibroblast growth factor for ischemic limb and heart injury: toward safety and minimal invasiveness. J Artif Organs 7:58–61

    Article  CAS  PubMed  Google Scholar 

  67. Kawasuji M, Nagamine H, Ikeda M, Sakakibara N, Takemura H, Fujii S, Watanabe Y (2000) Therapeutic angiogenesis with intramyocardial administration of basic fibroblast growth factor. Ann Thorac Surg 69:1155–1161

    Article  CAS  PubMed  Google Scholar 

  68. Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32:2407–2416

    Article  CAS  PubMed  Google Scholar 

  69. Liu XC, Zhao J, Wang Y, Liu TJ, Lü F, He GW (2010) Heparin- and basic fibroblast growth factor-incorporated stent: a new promising method for myocardial revascularization. J Surg Res 164:204–213

    Article  CAS  PubMed  Google Scholar 

  70. Yang Y, Gruwel ML, Dreessen de Gervai P, Sun J, Jilkina O, Gussakovsky E, Kupriyanov V (2012) MRI study of cryoinjury infarction in pig hearts: i. Effects of intrapericardial delivery of bFGF/VEGF embedded in alginate beads. NMR Biomed 25:177–188

    Article  CAS  PubMed  Google Scholar 

  71. Chu H, Chen CW, Huard J, Wang Y (2013) The effect of a heparin-based coacervate of fibroblast growth factor-2 on scarring in the infarcted myocardium. Biomaterials 34:1747–1756

    Article  CAS  PubMed  Google Scholar 

  72. Schumacher B, Peter P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97:645–650

    Article  CAS  PubMed  Google Scholar 

  73. Stegmann TJ, Hopppert T, Schneider A, Gemeinhardt S, Kocher M, Ibing R, Strupp G (2000) Induction of myocardial neoangiogenesis by human growth factors. A new Therapeutic Approach in Coronary Heart Disease Herz 25:589–599

    CAS  PubMed  Google Scholar 

  74. Sellke FW, Laham RJ, Edelman ER, Pearlman JD, Simons M (1998) Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thoracic Surg 65:1540–1544

    Article  CAS  Google Scholar 

  75. Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M (1999) Local perivasuclar delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery; results of a phase I randomised, double-blind placebo-controlled trial. Circulation 100:1865–1871

    Article  CAS  PubMed  Google Scholar 

  76. Laham RJ, Chronos NA, Pike M, Leimbach ME, Udelson JE, Pearlman JD, Pettigrew RI, Whitehouse MJ, Yoshizawa C, Simons M (2000) Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic disease; results of a phase I open-label dose escalation study. J Am Coll Cardiol 36:2132–2139

    Article  CAS  PubMed  Google Scholar 

  77. Unger EF, Goncalves I, Epstein SE, Chew EY, Trapnell CB, Cannon RO, Quyyumi AA (2000) Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol 85:1414–1419

    Article  CAS  PubMed  Google Scholar 

  78. Kleiman NS, Califf RM (2000) Results from late-breaking clinical trials sessions at ACCIS 2000 and ACC 2000. American College of Cardiology. J Am Coll Cardiol 36:310–325

    Article  CAS  PubMed  Google Scholar 

  79. Grines CL (2001) Adenovirus FGF angiogenic therapy (AGENT) trial for stable angina. In: Late-breaking clinical trial, American College of Cardiology 50th Annual Scientific sessions, 18–21 March.

  80. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD, West A, Rade JJ, Marrott P, Hammond HK, Engler RL (2002) Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105:1291–1297

    Article  CAS  PubMed  Google Scholar 

  81. Grines C, Rubanyi GM, Kleiman NS, Marrott P, Watkins MW (2003) Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am J Cardiol 92:24N–31N

    Article  CAS  PubMed  Google Scholar 

  82. Henry TD, Grines CL, Watkins MW, Dib N, Barbeau G, Moreadith R, Andrasfay T, Engler RL (2007) Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 50:1038–1046

    Article  CAS  PubMed  Google Scholar 

  83. Miyazawa K, Tsubouchi H, Naka D, Takahashi K, Okigaki M, Arakaki N, Nakayama H, Hirono S, Sakiyama O, Gohda E, Daikuhara Y, Kitamura N (1989) Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem Biophys Res Commun 163:967–973

  84. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature (London) 342:440–443

    Article  CAS  Google Scholar 

  85. Grant DS, Kleinman HK, Goldberg ID, Bharava MM, Nickoloff BJ, Kinsella JL, Polverini P, Rosen EM (1993) Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S a 90:1937–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Matsumori A, Furukawa Y, Hashimoto T, Ono K, Shioi T, Okada M, Iwasaki A, Nishio R, Sasayama S (1996) Increased circulating hepatocyte growth factor in the early stage of acute myocardial infarction. Biochem Biophys Res Commun 221:391–395

    Article  CAS  PubMed  Google Scholar 

  87. Sato T, Yoshinouchi T, Sakamoto T, Fujieda H, Murao S, Sato H, Kobayashi H, Ohe T (1997) Hepatocyte growth factor (HGF): a new biochemical marker for acute myocardial infarction. Heart Vessel 12:241–246

    Article  CAS  Google Scholar 

  88. He JG, Wu JL, Yan L, Zhang DS, Tan XY, Qi RD, Guo YH (2008) Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy 10:857–867

    Article  PubMed  CAS  Google Scholar 

  89. Ahmet I, Sawa Y, Yamauchi T, Matsuda H (2003) Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart. Ann Thoracic Surg 75:1283–1287

    Article  Google Scholar 

  90. Saeed M, Saloner D, Do L, Wilson M, Martin A (2011) Cardiovascular magnetic resonance imaging in delivering and evaluating the efficacy of hepatocyte growth factor gene in chronic infarct scar. Cardiovasc Revasc med 12:111–122

    Article  PubMed  Google Scholar 

  91. Xin X, Yang S, Ingle G, Zlot C, Ranell L, Kowalski J, Schwall R, Ferrara N, Gerristen ME (2001) Hepatocyte growth factor enhances vascular endothelial growth factor induced angiogenesis in vitro and in vivo. Am J Pathol 158:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ueda H, Nakamuraa T, Matsumotoa K, Sawab Y, Matsudab H, Namakura T (2001) A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc res 51:41–50

    Article  CAS  PubMed  Google Scholar 

  93. Funatsu T, Sawa Y, Ohtake S, Takehashi T, Matsumiya G, Matsuura N, Nakamura T, Matsuda H (2002) Therapeutic angiogenesis in the ischemic canine heart induced by myocardial injection of naked complementary DNA plasmid encoding hepatocyte growth factor. J Thorac Cardiovasc Surg 124:1099–1105

    Article  CAS  PubMed  Google Scholar 

  94. Duan HF, Wu CT, Wu DL, Lu Y, Liu HJ, Ha XQ, Zhan QW, Wand H, Jia XX, Wan LS (2003) Treatment of myocardial ischemia with bone marrow derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8:467–474

    Article  CAS  PubMed  Google Scholar 

  95. Konda I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomya K, Noma T, Namba T, Kohna M (2004) Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer. The first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol 44:644–653

    Article  CAS  Google Scholar 

  96. Perin EC, Silva GV, Vela DC, Zheng Y, Baimbridge F, Gahremanpour A, Quan X, Hahn W, Kim J, Wood K, Kitamura M (2011) Human hepatocyte growth factor (VM202) gene therapy via transendocardial injection in a pig model of chronic myocardial ischemia. J Card Fail 17:601–611

    Article  CAS  PubMed  Google Scholar 

  97. Lu F, Zhao X, Wu J, Cui Y, Mao Y, Chen K, Yuan Y, Gong D, Xu Z, Huang S (2013) MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis. Int J Cardiol 167:2524–2532

    Article  PubMed  Google Scholar 

  98. Zhao L, Liu X, Zhang Y, Liang X, Ding Y, Xu Y, Fang Z, Zhang F (2016) Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res 344:30–39

    Article  CAS  PubMed  Google Scholar 

  99. Raines EW, Bowen-Pope DF, Ross R (1990) Peptide growth factors and their receptors II. In: Sporn MB, Roberts AB (eds.) Springer Verlag, Berlin, pp. 173–262.

  100. Heldin C (1992) Structural and functional studies on platelet-derived growth factor. EMBO J 11:4251–4259

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Raines EW, Ross R (1992) Compartmentalization of PDGF on extracellular binding sites dependent on exon-6-encoded sequences. J Cell Biol 116:533–543

    Article  CAS  PubMed  Google Scholar 

  102. Welsh CL (1994) Platelet-derived growth factor receptor signals. J Biol Chem 269:32023–32026

    Google Scholar 

  103. Seifert RA, Hart CE, Phillips PE, Forstrom JW, Ross R, Murray MJ, Bowen Pope DF (1989) Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J Biol Chem 264:8771–8778

    CAS  PubMed  Google Scholar 

  104. Battegay EJ, Thommen R, Humar R (1996) Platelet-derived growth factor and angiogenesis. Trends Glycosci Glycotechnol 8:231–225

    Article  CAS  Google Scholar 

  105. Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86:670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hart CE, Bailey M, Curtis DA, Osborn S, Raines EW, Ross R, Forstrom JW (1990) Purification of PDGF-AB and PDGF-BB from human platelet extracts and identification of all three PDGF dimers in human platelets. Biochemistry 29:166–172

    Article  CAS  PubMed  Google Scholar 

  107. Khouri RK, Hong SP, Deune EG, Tarpley JE, Song SZ, Serdar CM, Pierce GF (1994) De novo generation of permanent neovascularized soft tissue appendages by platelet-derived growth factor. J Clin Invest 94:1757–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Benjamin L, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    CAS  PubMed  Google Scholar 

  109. Yu J, Moon A, Kim HR (2001) Both platelet-derived growth factor receptor (PDGFR)-alpha and PDGFR-beta promote murine fibroblast cell migration. Biochem Biophys Res Commun 282:697–700

    Article  CAS  PubMed  Google Scholar 

  110. Hirschi KK, D’Amore PA (1997) Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS 79:419–428

    CAS  PubMed  Google Scholar 

  111. Zhao W, Zhao T, Huang V, Chen Y, Ahokas RA, Sun Y (2011b) Platelet-derived growth factor involvement in myocardial remodeling following infarction. J Mol Cell Cardiol 51:830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  CAS  PubMed  Google Scholar 

  113. Yla-Herttuala S, Alitalo K (2003) Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 9:694–701

    Article  PubMed  CAS  Google Scholar 

  114. Hao X, Silva EA, Manson-Brober A, Grinnemo KH, Siddiqui AJ, Dellren G, Wardell E, Brodin AL, Mooney DJ, Sylven C (2007) Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with aliginate hydrogels after myocardial infarction. Cardiovasc res 75:178–185

    Article  CAS  PubMed  Google Scholar 

  115. Zymek P, Bujak M, Chatila K, Cieslak A, Thakker G, Entman ML, Frangogiannis NG (2006) The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323

    Article  CAS  PubMed  Google Scholar 

  116. Miyazono K, Okabe T, Urabe A, Takaku F, Heldin CH (1987) Purification and properties of an endothelial cell growth factor from human platelets. J Biol Chem 262:4098–4103

    CAS  PubMed  Google Scholar 

  117. Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin CH (1989) Identification of angiogenic activity and the cloning and expression of platelet derived endothelial cell growth factor. Nature 338:557–562

    Article  CAS  PubMed  Google Scholar 

  118. Ikeda R, Tajitsu Y, Iwashita K, Che XF, Yoshida K, Ushiyama M, Furukawa T, Komatsu M, Yamaguchi T, Shibayama Y, Yamamoto M, Zhao HY, Arima J, Takeda Y, Akiyama S, Yamada K (2008) Thymidine phosphorylase inhibits the expression of proapoptotic protein BNIP3. Biochem Biophys Res Commun 370:220–224

    Article  CAS  PubMed  Google Scholar 

  119. Li W, Chiba Y, Kimura T, Morioka K, Uesaka T, Ihaya A, Muraoka R (2001) Transmyocardial laser revascularisation induced angiogenesis correlated with the expression of matrix metalloproteinases and platelet derived endothelial cell growth factor. Eur J Cardiothorac Surg 19:156–163

    Article  CAS  PubMed  Google Scholar 

  120. Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y, Akiyama S (1995) Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer res 55:1687–1690

    CAS  PubMed  Google Scholar 

  121. Moghaddam A, Zhang HT, Fan TP, Hu DE, Lees VC, Turley H, Fox SB, Gatter KC, Harris AL, Bicknell R (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci U S a 92:998–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Usuki K, Saras J, Waltenberger J, Miyazono K, Pierce G, Thomason A, Heldin CH (1992) Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity. Biochem Biophys Res Commun 1M4:1311–1316

    Article  Google Scholar 

  123. Haraguchi M, Miyadera K, Uemura K, Sumizawa T, Furukawa T, Yamada K, Akiyama S, Yamada Y (1994) Angiogenic activity of enzymes. Nature 368:198

    Article  CAS  PubMed  Google Scholar 

  124. Griffiths L, Dachs GU, Bicknell R, Hariis AL, Stratford IJ (1997) The influence of oxygen tension and pH on the expression of platelet derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res 57:570–572

    CAS  PubMed  Google Scholar 

  125. Brown NS, Bicknell R (1998) Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis. Biochem J 334(Pt 1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ignatescu MC, Gharehbaghi-Schnell EG, Hassan A, Rezaie-Majd S, Korschineck I, Schleef RR, Glogar HD, Lang IM (1999) Expression of the angiogenic protein platelet derived endothelial cell growth factor in coronary artherosclerotic plaques: in vivo correlation of lesional microvessel density and constrictive vascular remodeling. Arterioscler Thromb Vasc Biol 19:2340–2347

    Article  CAS  PubMed  Google Scholar 

  127. Hemalatha T, Balachandran C, Murali Manohar B, Nayeem M, Subramaniam S, Sharma HS, Puvanakrishnan R (2010) Myocardial expression of PDECGF is associated with extracellular matrix remodeling in experimental myocardial infarction in rats. Biochem Cell Biol 88:491–503

    Article  CAS  PubMed  Google Scholar 

  128. Yamada N, Li W, Ihaya A, Kimura T, Morioka K, Ueska T, Takamori A, Hana M, Tanabe S, Tanaka K (2006) Platelet-derived endothelial cell growth factor gene therapy for limb ischemia. J Vasc Surg 44:1322–1328

    Article  PubMed  Google Scholar 

  129. Li W, Tanaka K, Morioka K, Uesaka T, Yamada N, Takamori A, Handa M, Tanabe S, Ihaya A (2005b) Thymidine phosphorylase gene transfer inhibits vascular smooth muscle cell proliferation by upregulating heme oxygenase-1 and p27KIP1. Arterioscler Thromb Vasc Biol 25:1370–1375

    Article  PubMed  CAS  Google Scholar 

  130. Li W, Tanaka K, Morioka K, Takamori A, Handa M, Yamada N, Ihaya A (2008) Long term effect of gene therapy for chronic ischemic myocardium using platelet derived endothelial cell growth factor in dogs. J Gene Med 10:412–420

    Article  CAS  PubMed  Google Scholar 

  131. Hemalatha T, Tiwari M, Balachandran C, Manohar BM, Puvanakrishnan R (2009) Platelet derived endothelial cell growth factor mediates angiogenesis and antiapoptosis in rat aortic endothelial cells. Biochem Cell Biol 87:883–893

    Article  CAS  PubMed  Google Scholar 

  132. Schuster SJ, Koury ST, Bohler M, Salceda S, Caro J (1992) Cellular sites of extrarenal and renal erythropoietin production in anaemic rats. Br J Haematol 81:153–159

    Article  CAS  PubMed  Google Scholar 

  133. Ebert BL, Bunn HF (1999) Regulation of the erythropoietin gene. Blood 94:1864–1877

    CAS  PubMed  Google Scholar 

  134. Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W (1999) Interleukin-1β and tumor necrosis factor-α stimulate DNA binding of hypoxia inducible factor-1. Blood 94:1561–1567

    CAS  PubMed  Google Scholar 

  135. Jelkmann W, Wagner K (2004) Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 83:673–686

    Article  CAS  PubMed  Google Scholar 

  136. Anagnostou A (1994) Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci U S a 91:3974–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chong ZZ, Kang JQ, Maiese K (2002) Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106:2973–2979

    Article  CAS  PubMed  Google Scholar 

  138. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia reperfusion injury. Circulation 108:79–85

    Article  CAS  PubMed  Google Scholar 

  139. Shi Y, Rafiee P, Su J, Pritchard KA Jr, Tweddell JS, Baker JE (2004) Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels. Basic res Cardiol 99:173–182

    Article  CAS  PubMed  Google Scholar 

  140. Hanlon PR, Fu P, Wright GL, Steenbergen C, Arcasoy MO, Murphy E (2005) Mechanisms of erythropoietin-mediated cardioprotection during ischemia reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling. FASEB j 19:1323–1325

    CAS  PubMed  Google Scholar 

  141. Wald M, Gutnisky A, Borda E, Sterin-Borda L (1995) Erythropoietin modified the cardiac action of ouabain in chronically anaemic-uraemic rats. Nephron 71:190–196

    Article  CAS  PubMed  Google Scholar 

  142. Porat O, Neumann D, Zamir O, Nachshon S, Feigin E, Cohen J, Zamir N (1996) Erythropoietin stimulates atrial natriuretic peptide secretion from adult rat cardiac atrium. J Pharmacol Exp Ther 276:1162–1168

    CAS  PubMed  Google Scholar 

  143. Parsa CJ, Matsumoto A, Kim J, Riel RU, Pascal LS, Walton GB, Thompson RB, Petrofski JA, Annex BH, Stamler JS, Koch WJ (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, Matsumoto A, Stamler JS, Koch WJ (2004) Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 279:20655–20662

    Article  CAS  PubMed  Google Scholar 

  145. Bullard AJ, Govewalla P, Yellon DM (2005) Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 100:397–403

    Article  CAS  PubMed  Google Scholar 

  146. Hirata A, Minamino T, Asanuma H, Sanada S, Fujita M, Tsukamoto O, Wakeno M, Myoishi M, Okada K, Koyama H, Komamura K, Takashima S, Shinozaki Y, Mori H, Tomoike H, Hori M, Kitakaze M (2005) Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts. Cardiovasc Drugs Ther 19:33–40

    Article  CAS  PubMed  Google Scholar 

  147. Moon C, Krawczyk M, Ahn D, Ahmet I, Paik D, Lakatta E, Talan MI (2003) Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci U S A 100:11612–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Westenbrink BD, Lipsic E, van der Meer P, van der Harst P, Oeseburg H, Darvaas J, Koster J, Voors AA, van Veldhuisen DJ, van Gilst WH, Schoemaker RG (2007) Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 28:2018–2027

    Article  CAS  PubMed  Google Scholar 

  149. Van der Meer P, Lipsic E, Henning RH, Boddeus K, van der Velden J, Voors AA, van Veldhuisen DJ, van Gilst WH, Schoemaker R (2005) Erythropoietin induced neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J am Coll Cardiol 46:125–133

    Article  CAS  PubMed  Google Scholar 

  150. Brunner S, Winoradow J, Huber BC, Micheal Z, Fischer R, Assmann G, Herbach N, Wanke R, Mueller-Hoecker J, Franz WM (2009) Erythropoietin administration after myocardial infarction in mice attenuates ischemic cardiomyopathy associated with enhanced homing of bone marrow-derived progenitor cell via the CXCR-4/SDF-1 axis. FASEB j 23:351–361

    Article  CAS  PubMed  Google Scholar 

  151. Hirata A, Minamino T, Asanuma H, Fujita M, Wakeno M, Myoishi M, Tsukamoto O, Okada K, Koyama H, Komamura K, Takashima S, Shinozaki Y, Mori H, Shiraga M, Kitakaze M, Hori M (2006) Erythropoietin enhances neovascularization of ischemic myocardium and improves left ventricular dysfunction after myocardial infarction in dogs. J Am Coll Cardiol 48:176–184

    Article  CAS  PubMed  Google Scholar 

  152. Broberg AM, Grinnemo KH, Genead R, Danielsson C, Andersson AB, Wärdell E, Sylvén C (2008) Erythropoietin has an antiapoptotic effect after myocardial infarction and stimulates in vitro aortic ring sprouting. Biochem Biophys Res Commun 371:75–78

    Article  CAS  PubMed  Google Scholar 

  153. Bagla AG, Ercan E, Asgun HF, Ickin M, Ercan F, Yavuz O, Bagla S, Kaplan A (2013) Experimental acute myocardial infarction in rats: HIF-1α, caspase-3, erythropoietin and erythropoietin receptor expression and the cardioprotective effects of two different erythropoietin doses. Acta Histochem 115:658–668

    Article  PubMed  CAS  Google Scholar 

  154. Van Veldhuisen DJ, Dickstein K, Cohen-Solal A, Lok DJ, Wasserman SM, Baker N, Rosser D, Cleland JG, Ponikowski P (2007) Randomized, double-blind, placebo-controlled study to evaluate the effect of two dosing regimens of darbepoetin alfa in patients with heart failure and anemia. Eur Heart J 28:2208–2216

    Article  CAS  PubMed  Google Scholar 

  155. Lipsic E, van der Meer P, Voors AA (2006) A single bolus of a long-acting erythropoietin analogue darbepoetin alfa in patients with acute myocardial infarction: a randomized feasibility and safety study. Cardiovasc Drugs Ther 20:135–141

    Article  CAS  PubMed  Google Scholar 

  156. Lipsic E, Schoemaker R, van der Meer P, Voors AA, van Veldhuisen DJ, van Gilst WH (2006) Protective effects of erythropoietin in cardiac ischemia; from bench to bedside. J Am Coll Cardiol 48:2161–2167

    Article  CAS  PubMed  Google Scholar 

  157. Ferrario M, Arbustini E, Massa M, Rosti V, Marziliano N, Raineri C, Campanelli R, Bertoletti A, De Ferrari GM, Klersy C, Angoli L, Bramucci E, Marinoni B, Ferlini M, Moretti E, Raisaro A, Repetto A, Schwartz PJ, Tavazzi L (2011) High-dose erythropoietin in patients with acute myocardial infarction: a pilot, randomised, placebo-controlled study. Int J Cardiol 147:124–131

    Article  PubMed  Google Scholar 

  158. Rookmaaker MB, Verhaar MC, Loomans CJ, Verloop R, Peters E, Westerweel PE, Murohara T, Staal FJ, Van Zonneveld AJ, Koolwijk P, Rabelink TJ, Van Hinsbergh VW (2005) CD34+ cells home, proliferate, and participate in capillary formation, and in combination with CD34-cells enhance tube formation in a 3-dimensional matrix. Arterio Thromb Vasc Biol 25:1–8

    Article  CAS  Google Scholar 

  159. Ali-Hassan-Sayegh S, Mirhosseini SJ, Tahernejad M, Mahdavi P, Haddad F, Shahidzadeh A, Lotfaliani MR, Sedaghat-Hamedani F, Kayvanpour E, Weymann A, Sabashnikov A, Popov AF (2015) Administration of erythropoietin in patients with myocardial infarction: does it make sense? An updated and comprehensive meta-analysis and systematic review. Cardiovasc Revasc med 16:179–189

    Article  PubMed  Google Scholar 

  160. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for TIE2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  161. Valenzuela DM, Griffith JA, Rojass J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA, Huang T, Papadopoulos N, Maisonpierre PC, Davis S, Yancopoulos GD (1999) Angiopoietin 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S a 96:1904–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearnery M, Magner M, Yancopoulos GD, Isner JM (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularisation. Circ Res 83:233–240

    Article  CAS  PubMed  Google Scholar 

  163. Sun L, Cui M, Wang Z, Feng X, Mao J, Chen P, Kangtao M, Chen F, Zhou C (2007) Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem Biophys res Commun 357:779–784

    Article  CAS  PubMed  Google Scholar 

  164. Anderlini P, Donato M, Chan KW, Huh YO, Gee AP, Lauppe MJ, Champlin RE, Korbling M (1999) Allogeneic blood progenitor cell collection in normal donors after mobilization with filgrastim: the M.D. Anderson Cancer Center experience. Transfusion 39:555–560

    Article  CAS  PubMed  Google Scholar 

  165. Flomenberg N, DiPersio J, Calandra G (2005) Role of CXCR4 chemokine receptor blockade using AMD3100 for mobilization of autologous hematopoietic progenitor cells. Acta Haematol 114:198–205

    Article  CAS  PubMed  Google Scholar 

  166. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversam P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, Arai M, Misao Y, Lu C, Suzuki K, Goto K, Komada A, Takahashi T, Kosai K, Fujiwara T, Fujiwara H (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109:2572–2580

    Article  CAS  PubMed  Google Scholar 

  168. Werneck-de-Castro JP, Costa-e-Sousa RH, de Oliveira PF, Pinho-Ribeiro V, Mello DB, Pecanha R, Mattos E, Olivares EL, Maia AC, Mill JG, Goldenberg RC, Campos-de-Carvalho AC (2006) G-CSF does not improve systolic function in a rat model of acute myocardial infarction. Basic Res Cardiol 101:494–501

    Article  CAS  PubMed  Google Scholar 

  169. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, Ohtsuka M, Matsuura K, Sano M, Nishi J, Iwanaga K, Akazawa H, Kunieda T, Zhu W, Hasegawa H, Kunisada K, Nagai T, Nakaya H, Yamauchi-Takihara K, Komuro I (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311

    Article  CAS  PubMed  Google Scholar 

  170. Deindl E, Zaruba MM, Brunner S, Huber B, Mehl U, Assmann G, Hoefer IE, Mueller-Hoecker J, Franz WM (2006) G-CSF administration after myocardial infarction in mice attenuates late ischaemic cardiomyopathy by enhanced arteriogenesis. FASEB j 20:956–958

    Article  CAS  PubMed  Google Scholar 

  171. Zhao Q, Sun C, Xu X, Zhou J, Wu Y, Tian Y, Ma A, Liu Z (2013) Early use of granulocyte colony stimulating factor improves survival in a rabbit model of chronic myocardial ischemia. J Cardiol 61:87–94

    Article  PubMed  Google Scholar 

  172. Kastrup J, Ripa RS, Wang Y, Jorgensen E (2006) Myocardial regeneration induced by granulocyte-colony stimulating factor mobilization of stem cells in patients with acute or chronic ischaemic heart disease: a non-invasive alternative for clinical stem cell therapy. Eur Heart J 27:2748–2754

    Article  CAS  PubMed  Google Scholar 

  173. Engelmann MG, Theiss HD, Theiss C, Huber A, Wintersperger BJ, Werle-Ruedinger AE, Schoenberg SO, Steinbeck G, Franz WM (2008) G-CSF in patients suffering from late revascularized ST elevation myocardial infarction: analysis on the timing of G-CSF administration. Exp Hematol 36:703–739

    Article  CAS  PubMed  Google Scholar 

  174. Overgaard M, Ripa RS, Wang Y, Jørgensen E, Kastrup J (2010) Timing of granulocyte-colony stimulating factor treatment after acute myocardial infarction and recovery of left ventricular function: results from the STEMMI trial. Int J Cardiol 140:351–355

    Article  PubMed  Google Scholar 

  175. Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A 88:9271–9276

    Article  Google Scholar 

  176. Cao Y, Ji WR, Qi P, Rosin A, Cao Y (1997) Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem Biophys Res Commun 235:493–498

    Article  CAS  PubMed  Google Scholar 

  177. Weindel K, Moringlane JR, Marme D, Weich HA (1994) Detection and quantification of vascular endothelial growth factor/ vascular permeability factor in brain tumour tissue and cyst fluid: the key to angiogenesis? Neurosurgery 35:439–448

    Article  CAS  PubMed  Google Scholar 

  178. Takahashi A, Sasaki H, Kim SJ, Sk T, Kakizoe T, Tsukamoto T, Kumamoto Y, Sugimura T, Terada M (1994) Marked increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated angiogenesis. Cancer res 54:4233–4237

    CAS  PubMed  Google Scholar 

  179. Roncal C, Buysschaert I, Chorianopoulos E, Georgiadou M, Meilhac O, Demol M, Michel JB, Vinckier S, Moons L, Carmeliet P (2008) Beneficial effects of prolonged systemic administration of PIGF on late outcome of post-ischaemic myocardial performance. J Pathol 216:236–244

    Article  CAS  PubMed  Google Scholar 

  180. Humbel RE (1990) Insulin like growth factors I and II. Eur J Biochem 190:445–462

    Article  CAS  PubMed  Google Scholar 

  181. Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Yin QW, Oppenheim RW (1993) Insulin like growth factors: putative muscle derived trophic agents that promote motoneuron survival. J Neurobiol 24:1578–1588

    Article  CAS  PubMed  Google Scholar 

  182. Grant MB, Mames RN, Fitzerald C, Ellis EA, Aboufriekha M, Guy J (1993) Insulin like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia 36:282–291

    Article  CAS  PubMed  Google Scholar 

  183. Dobrucki LW, Tsutsumi Y, Kalinowski L, Dean J, Gavin M, Sen S, Mendizabal M, Sinusas AJ, Aikawa R (2010) Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol 48(6):1071–1079

    Article  CAS  PubMed  Google Scholar 

  184. Friberg L, Werner S, Eggertsen G, Ahnve S (2000) Growth hormone and insulin like growth factor-1 in acute myocardial infarction. Eur Heart J 21:1547–1554

    Article  CAS  PubMed  Google Scholar 

  185. Battler A, Hasdai D, Oldber I, Ohad D, Di Segni E, Bor A, Varda Bloom N, Vered Z, Kornowski R, Lake M, Nass D, Savion N (1995) Exogenous insulin like growth factor II enhances post-infarction regional myocardial infarction in swine. Eur Heart J 16:1851–1859

    Article  CAS  PubMed  Google Scholar 

  186. Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J (2008) Transforming growth factor-beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103:485–492

    Article  CAS  PubMed  Google Scholar 

  187. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alital K (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 269:6271–6274

    CAS  PubMed  Google Scholar 

  188. Yamamoto T, Bing RJ (2000) Nitric oxide donors. PSEBM 225:200–206

    Article  CAS  Google Scholar 

  189. Hariawala MD, Sellke FW (1997) Angiogenesis and the heart: therapeutic implications. J R Soc Med 90:1022–1028

    Article  Google Scholar 

  190. Morbidelli L, Chan CH, Douglas JG, Granger HJ, Ledda F, Ziche M (1996) Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Phys 270:H411–H415

    CAS  Google Scholar 

  191. Epstein SE, Kornowski R, Fuchs S, Dvorak HF (2001) Angiogenesis therapy: amidst hype, the neglected potential for serious side effects. Circulation 104:115–119

    Article  CAS  PubMed  Google Scholar 

  192. Khan TA, Sellke FW, Laham RJ (2003) Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther 10:285–291

    Article  CAS  PubMed  Google Scholar 

  193. Kornowski R, Fuchs S, Leon MB, Epstein SE (2000) Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 101:454–458

    Article  CAS  PubMed  Google Scholar 

  194. Chen H, Peng P, Cheng L, Lin X, Chung SS, Li M (2010) Reconstitution of coronary vasculature in ischemic hearts by plant-derived angiogenic compounds. Int J Cardiol 156:148–155

    Article  PubMed  Google Scholar 

  195. Moon EJ, Lee YM, Lee OH, Lee MJ, Lee SK, Chung MH, Park YI, Sung CK, Choi JS, Kim KW (1999) A novel angiogenic factor derived from Aloe vera gel: beta-sitosterol, a plant sterol. Angiogenesis 3:117–123

    Article  CAS  PubMed  Google Scholar 

  196. Fukuda S, Kaga S, Zhan L, Bagchi D, Das DK, Bertelli A, Maulik N (2006) Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1. Cell Biochem Biophys 44:43–49

    Article  CAS  PubMed  Google Scholar 

  197. Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RN, Sasisekharan R, Fan TP (2004) Modulating angiogenesis: the Yin and the Yang in ginseng. Circulation 110:1219–1225

    Article  CAS  PubMed  Google Scholar 

  198. Trelles DR, Scimia MC, Bushway P, Tran D, Monosov A, Monosov E, Peterson K, Rentschler S, Cabrales P, Ruiz-Lozano P, Mercola M (2016) Notch-independent RBPJ controls angiogenesis in the adult heart. Nat Commun 7:12088. doi:10.1038/ncomms12088

    Article  CAS  Google Scholar 

  199. Singla DK (2016) Stem cells and exosomes in cardiac repair. Curr Opin Pharmacol 27:19–23

    Article  CAS  PubMed  Google Scholar 

  200. Zhaofu L, Dongqing C (2016) Cardiac telocytes in regeneration of myocardium after myocardial infarction. Adv Exp med Biol 913:229–239

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The award of DST-Women scientist fellowship to T. Hemalatha, S. Iswariya, and D.N. Gunadharini is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemalatha Thiagarajan.

Ethics declarations

Conflict of interest

The authors T. Hemalatha, T. UmaMaheswari, S. Iswariya, D.N. Gunadharini, and K. Anbukkarasi declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiagarajan, H., Thiyagamoorthy, U., Shanmugham, I. et al. Angiogenic growth factors in myocardial infarction: a critical appraisal. Heart Fail Rev 22, 665–683 (2017). https://doi.org/10.1007/s10741-017-9630-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9630-7

Keywords

Navigation