Skip to main content

Advertisement

Log in

Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Oxidative stress is involved in progression of left ventricular hypertrophy and heart failure. Since NADPH oxidases are a major source of reactive oxygen species in the heart, we studied left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91phox.

Methods and results

gp91phox knockout (KO) and wild–type (WT) animals underwent coronary artery ligation. Mortality was significant higher in the gp91phox KO mice. However, transthoracic echocardiography performed at days 1, 7, and 56 at mid–papillary levels revealed that progression of left ventricular remodeling was not influenced by the genotype. Moreover, systemic oxidative stress was not reduced in gp91phox KO mice as indicated by a significant increase in lipid peroxides potentially mediated by an increase of the NADPH subunit nox–1 in gp91phox KO mice.

Conclusion

Targeted deletion of the NADPH subunit gp91phox does not affect left ventricular remodeling following myocardial infarction and does not decrease the production of oxidative stress. However, the final role of the different NADPH subunits in the heart under pathophysiologic conditions remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G (2001) Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 104:982–985

    CAS  PubMed  Google Scholar 

  2. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91 (phox)–containing NADPH oxidase in angiotensin II–induced cardiac hypertrophy in mice. Circulation 105:293–296

    Article  CAS  PubMed  Google Scholar 

  3. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure–overload versus angiotensin II–induced cardiac hypertrophy. Circ Res 93:802–805

    CAS  PubMed  Google Scholar 

  4. Byrne JA, Grieve DJ, Cave AC, Shah AM (2003) Oxidative stress and heart failure. Arch Mal Coeur Vaiss 96:214–221

    CAS  PubMed  Google Scholar 

  5. Chien KR (1999) Stress pathways and heart failure. Cell 98:555–558

    Article  CAS  PubMed  Google Scholar 

  6. Dhalla AK, Hill MF, Singal PK (1996) Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 28:506–514

    Article  CAS  PubMed  Google Scholar 

  7. Engberding N, Spiekermann S, Schaefer A, Heineke A, Wiencke A, Muller M, Fuchs M, Hilfiker–Kleiner D, Hornig B, Drexler H, Landmesser U (2004) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110:2175–2179

    Article  CAS  PubMed  Google Scholar 

  8. Frantz S, Calvillo L, Tillmanns J, Elbing I, Dienesch C, Bischoff H, Ertl G, Bauersachs J (2005) Repetitive postprandial hyperglycemia increases cardiac ischemia/ reperfusion injury. Prevention by the alpha–Glucosidase Inhibitor Acarbose. FASEB 19:591–593

    CAS  Google Scholar 

  9. Frantz S, Hu K, Widder J, Bayer B, Witzel CC, Schmidt I, Galuppo P, Strotmann J, Ertl G, Bauersachs J (2004) Peroxisome proliferator activated–receptor agonism and left ventricular remodeling in mice with chronic myocardial infarction. Br J Pharmacol 141:9–14

    Article  CAS  PubMed  Google Scholar 

  10. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104:271–280

    CAS  PubMed  Google Scholar 

  11. Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe Y (2001) Expression of p22–phox and gp91–phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun 281:1200–1206

    Article  CAS  PubMed  Google Scholar 

  12. Gehrmann J, Frantz S, Maguire CT, Vargas M, Ducharme A, Wakimoto H, Lee RT, Berul CI (2001) Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Res Cardiol 96:237–250

    Article  CAS  PubMed  Google Scholar 

  13. Griendling KK, Sorescu D, Ushio–Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  14. Grieve DJ, Shah AM (2003) Oxidative stress in heart failure. More than just damage. Eur Heart J 24:2161–2163

    Article  PubMed  Google Scholar 

  15. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171

    Article  CAS  PubMed  Google Scholar 

  16. Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL (1991) Study of the mechanisms of hydrogen peroxide and hydroxyl free radical–induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 266:2354–2361

    CAS  PubMed  Google Scholar 

  17. Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, Takeshita A (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398

    CAS  PubMed  Google Scholar 

  18. Kinugawa S, Zhang J, Messina E, Walsh E, Huang H, Kaminski PM, Wolin MS, Hintze TH (2005) gp91phox–containing NAD(P)H oxidase mediates attenuation of nitric oxide–dependent control of myocardial oxygen consumption by ANG II. Am J Physiol Heart Circ Physiol 289:H862–H867

    Article  CAS  PubMed  Google Scholar 

  19. Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297

    CAS  PubMed  Google Scholar 

  20. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484

    CAS  PubMed  Google Scholar 

  21. Maack C, Kartes T, Kilter H, Schafers HJ, Nickenig G, Bohm M, Laufs U (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of rac1–GTPase and represents a target for statin treatment. Circulation 108:1567–1574

    CAS  PubMed  Google Scholar 

  22. Maytin M, Siwik DA, Ito M, Xiao L, Sawyer DB, Liao R, Colucci WS (2004) Pressure overload–induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109:1168–1171

    Article  CAS  PubMed  Google Scholar 

  23. Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, Orkin SH, Doerschuk CM, Dinauer MC (1995) Mouse model of X–linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9:202–209

    Article  CAS  PubMed  Google Scholar 

  24. Shiomi T, Tsutsui H, Matsusaka H, Murakami K, Hayashidani S, Ikeuchi M, Wen J, Kubota T, Utsumi H, Takeshita A (2004) Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109:544–549

    Article  CAS  PubMed  Google Scholar 

  25. Ushio–Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW (2002) Novel role of gp91(phox)–containing NAD(P)H oxidase in vascular endothelial growth factor–induced signaling and angiogenesis. Circ Res 91:1160–1167

    CAS  PubMed  Google Scholar 

  26. Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr (1987) Lipoperoxides in plasma as measured by liquid–chromatographic separation of malondialdehyde–thiobarbituric acid adduct. Clin Chem 33:214–220

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Frantz M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frantz, S., Brandes, R.P., Hu, K. et al. Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol 101, 127–132 (2006). https://doi.org/10.1007/s00395-005-0568-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0568-x

Key words

Navigation