Skip to main content
Log in

Methods of assessing vagus nerve activity and reflexes

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The methods used to assess cardiac parasympathetic (cardiovagal) activity and its effects on the heart in both humans and animal models are reviewed. Heart rate (HR)-based methods include measurements of the HR response to blockade of muscarinic cholinergic receptors (parasympathetic tone), beat-to-beat HR variability (HRV) (parasympathetic modulation), rate of post-exercise HR recovery (parasympathetic reactivation), and reflex-mediated changes in HR evoked by activation or inhibition of sensory (afferent) nerves. Sources of excitatory afferent input that increase cardiovagal activity and decrease HR include baroreceptors, chemoreceptors, trigeminal receptors, and subsets of cardiopulmonary receptors with vagal afferents. Sources of inhibitory afferent input include pulmonary stretch receptors with vagal afferents and subsets of visceral and somatic receptors with spinal afferents. The different methods used to assess cardiovagal control of the heart engage different mechanisms, and therefore provide unique and complementary insights into underlying physiology and pathophysiology. In addition, techniques for direct recording of cardiovagal nerve activity in animals; the use of decerebrate and in vitro preparations that avoid confounding effects of anesthesia; cardiovagal control of cardiac conduction, contractility, and refractoriness; and noncholinergic mechanisms are described. Advantages and limitations of the various methods are addressed, and future directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ, for the ATRAMI investigators (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–484

    PubMed  Google Scholar 

  2. Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265:663–679

    CAS  PubMed  Google Scholar 

  3. Thayer JF, Lane RD (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74:224–242

    PubMed  Google Scholar 

  4. Katona PG, Lipson D, Dauchot PJ (1977) Opposing central and peripheral effects of atropine on parasympathetic cardiac control. Am J Physiol 232:H146–H151

    CAS  PubMed  Google Scholar 

  5. Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    CAS  PubMed  Google Scholar 

  6. Halliwill JR, Billman GE (1992) Effect of general anesthesia on cardiac vagal tone. Am J Physiol 262(Heart Circ Physiol 31):H1719–H1724

    CAS  PubMed  Google Scholar 

  7. Bouairi E, Neff R, Evans C, Gold A, Andresen MC, Mendelowitz D (2004) Respiratory sinus arrhythmia in freely moving and anesthetized rats. J Appl Physiol 97:1431–1436

    PubMed  Google Scholar 

  8. Tzeng Y-C, Galletly DC, Larsen PD (2005) Paradoxical respiratory sinus arrhythmia in the anesthetized rat. Auton Neurosci 118:25–31

    PubMed  Google Scholar 

  9. Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res 29:437–445

    CAS  PubMed  Google Scholar 

  10. De Angeles K, Wichi RB, Jesus WRA, Moreira ED, Morris M, Krieger EM, Irigoyen MC (2004) Exercise training changes autonomic cardiovascular balance in mice. J Appl Physiol 96:2174–2178

    Google Scholar 

  11. Task Force of the European Society of Cardiology, the North American Society of Pacing, Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Google Scholar 

  12. Thireau J, Zhang BL, Poisson D, Babuty D (2007) Heart rate variability in mice: a theoretical and practical guide. Exp Physiol 93(1):83–94

    PubMed  Google Scholar 

  13. Laude D, Baudrie V, Elghozi J-L (2008) Effects of atropine on the time and frequency domain estimates of blood pressure and heart rate variability in mice. Clin Exp Pharmacol Physiol 35:454–457

    CAS  PubMed  Google Scholar 

  14. Eckberg DL (2003) The human respiratory gate. J Physiol 548:339–352

    CAS  PubMed  Google Scholar 

  15. Grossman P, Kollai M (1993) Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within- and between-individual relations. Psychophysiology 30:486–495

    CAS  PubMed  Google Scholar 

  16. Grossman P, Taylor EW (2007) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74:263–285

    PubMed  Google Scholar 

  17. Routledge HC, Chowdhary S, Townend JN (2002) Heart rate variability—a therapeutic target? J Clin Pharm Ther 27:85–92

    CAS  PubMed  Google Scholar 

  18. Baudrie V, Laude D, Elghozi J-L (2007) Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice. Am J Physiol Regul Integr Comp Physiol 292:R904–R912

    CAS  PubMed  Google Scholar 

  19. Perlini S, Giangregorio F, Coco M, Radaelli A, Solda PL, Bernardi L, Ferrari AU (1995) Autonomic and ventilatory components of heart rate and blood pressure variability in freely behaving rats. Am J Physiol 269(Heart Circ Physiol 38):H1729–H1734

    CAS  PubMed  Google Scholar 

  20. Grossman P, Karemaker J, Wieling W (1991) Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology 28:201–216

    CAS  PubMed  Google Scholar 

  21. Bernardi L, Rossi M, Soffiantino F, Marti G, Ricordi L, Finardi G, Fratino P (1989) Cross correlation of heart rate and the respiration versus deep breathing. Assessment of new test of cardiac autonomic function in diabetes. Diabetes 38:589–596

    CAS  PubMed  Google Scholar 

  22. Jokkel G, Bonyhay I, Kollai M (1995) Heart rate variability after complete autonomic blockade in man. J Auton Nerv Syst 51:85–89

    CAS  PubMed  Google Scholar 

  23. Fazan R Jr, de Oliveira M, Dias da Silva VJ, Joaquim LF, Montano N, Porta A, Chapleau MW, Salgado HC (2005) Frequency-dependent baroreflex modulation of blood pressure and heart rate variability in conscious mice. Am J Physiol Heart Circ Physiol 289:H1968–H1975

    CAS  PubMed  Google Scholar 

  24. Coote JH, Bothams VF (2001) Cardiac vagal control before, during and after exercise. Exp Physiol 86(6):811–815

    CAS  PubMed  Google Scholar 

  25. Tang Y-D, Dewland TA, Wencker D, Katz SD (2009) Post-exercise heart rate recovery independently predicts mortality risk in patients with chronic heart failure. J Cardiac Fail 15:850–855

    CAS  Google Scholar 

  26. Kollai M, Mizsei G (1990) Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol 424:329–342

    CAS  PubMed  Google Scholar 

  27. Kiviniemi AM, Hautala AJ, Seppanen T, Makikallio TH, Huikuri HV, Tulppo MP (2004) Saturation of high frequency oscillations of R-R intervals in healthy subjects and patients after acute myocardial infarction during ambulatory conditions. Am J Physiol Heart Circ Physiol 287:H1921–H1927

    CAS  Google Scholar 

  28. Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39:801–805

    CAS  PubMed  Google Scholar 

  29. Bloomfield DM, Zweibel S, Bigger JT Jr, Steinman RC (1998) R-R variability detects increases in vagal modulation with phenylephrine infusion. Am J Physiol 274(Heart Circ Physiol 43):H1761–H1766

    Google Scholar 

  30. Goldberger JJ, Challapalli S, Tung R, Parker MA, Kadish AH (2001) Relationship of heart rate variability to parasympathetic effect. Circulation 103:1977–1983

    CAS  PubMed  Google Scholar 

  31. Goldberger JJ, Ahmed MW, Parker MA, Kadish AH (1994) Dissociation of heart rate variability from parasympathetic tone. Am J Physiol 266(Heart Circ Physiol 35):H2152–H2157

  32. Medigue C, Girard A, Laude D, Monti A, Wargon M, Elghozi J-L (2001) Relationship between pulse interval and respiratory sinus arrhythmia: a time- and frequency-domain analysis of the effects of atropine. Pflugers Arch Eur J Physiol 441:650–655

    CAS  Google Scholar 

  33. Buchheit M, Gindre C (2006) Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol 291:H451–H458

    CAS  PubMed  Google Scholar 

  34. Buchheit M, Papelier Y, Laursen PB, Ahmaidi S (2007) Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol 293:H8–H10

    CAS  PubMed  Google Scholar 

  35. Katz SD (2010) In search of the optimal measure for assessment of parasympathetic control of heart rate. Clin Auton Res 20:1–2

    PubMed  Google Scholar 

  36. Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176

    CAS  PubMed  Google Scholar 

  37. Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM (2001) Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci 940:1–19

    CAS  PubMed  Google Scholar 

  38. Kollai M, Jokkel G, Bonyhay I, Tomcsanyi J, Naszlady A (1994) Relation between baroreflex sensitivity and cardiac vagal tone in humans. Am J Physiol 266(Heart Circ Physiol 35):H21–H27

    CAS  PubMed  Google Scholar 

  39. Eckberg DL (1980) Parasympathetic cardiovascular control in human disease: a critical review of methods and results. Am J Physiol 239(Heart Circ Physiol 8):H581–H593

    CAS  PubMed  Google Scholar 

  40. Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19

    CAS  PubMed  Google Scholar 

  41. Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ Res 24:109–121

    CAS  PubMed  Google Scholar 

  42. Gribbin B, Pickering TG, Sleight P, Peto R (1971) Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res 29:424–431

    CAS  PubMed  Google Scholar 

  43. Head GA, McCarty R (1987) Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats. J Auton Nerv Syst 21:203–213

    CAS  PubMed  Google Scholar 

  44. Ebert TJ, Cowley AW (1992) Baroreflex modulation of sympathetic outflow during physiological increases of vasopressin in humans. Am J Physiol 262(Heart Circ Physiol 31):H1372–H1378

    Google Scholar 

  45. Hunt BE, Farquhar WB (2005) Nonlinearities and asymmetries of the human cardiovagal baroreflex. Am J Physiol Regul Integr Comp Physiol 288:R1339–R1346

    CAS  PubMed  Google Scholar 

  46. Korner PI, Tonkin AM, Uther JB (1979) Valsalva constrictor and heart rate reflexes in subjects with essential hypertension and with normal blood pressure. Clin Exp Pharmacol Physiol 6:97–110

    CAS  PubMed  Google Scholar 

  47. Smith ML, Beightol LA, Fritsch-Yelle JM, Ellenbogen KA, Porter TR, Eckberg DL (1996) Valsalva’s maneuver revisited: a quantitative method yielding insights into human autonomic control. Am J Physiol 271(Heart Circ Physiol 40):H1240–H1249

    CAS  PubMed  Google Scholar 

  48. Eckberg DL, Cavanaugh MS, Mark AL, Abboud FM (1975) A simplified neck suction device for activation of carotid baroreceptors. J Lab Clin Med 85:167–173

    CAS  PubMed  Google Scholar 

  49. Fadel PJ, Ogoh S, Keller DM, Raven PB (2003) Recent insights into carotid baroreflex function in humans using the variable pressure neck chamber. Exp Physiol 88(6):671–680

    PubMed  Google Scholar 

  50. Cooper VL, Hainsworth R (2009) Carotid baroreflex testing using the neck collar device. Clin Auton Res 19:102–112

    PubMed  Google Scholar 

  51. Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G (1985) A new approach to the analysis of the arterial baroreflex. J Hypertens 3(Suppl 3):579–581

    Google Scholar 

  52. Parati G, Frattola A, Di Rienzo M, Castiglioni P, Pedotti A, Mancia G (1995) Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. Am J Physiol 268(Heart Circ Physiol 37):H1606–H1612

    CAS  PubMed  Google Scholar 

  53. Gulli G, Claydon VE, Cooper VL, Hainsworth R (2005) R-R interval-blood pressure interaction in subjects with different tolerances to orthostatic stress. Exp Physiol 90(3):367–375

    PubMed  Google Scholar 

  54. Laude D, Baudrie V, Elghozi J-L (2008) Applicability of recent methods used to estimate spontaneous baroreflex sensitivity to resting mice. Am J Physiol Regul Integr Comp Physiol 294:R142–R150

    CAS  PubMed  Google Scholar 

  55. Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A (2001) Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol Regul Integr Comp Physiol 280:R744–R751

    CAS  PubMed  Google Scholar 

  56. Legramante JM, Raimondi G, Massaro M, Cassarino S, Peruzzi G, Iellamo F (1999) Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. Circulation 99:1760–1766

    CAS  PubMed  Google Scholar 

  57. Wichterle D, Melenovsky V, Malik M (2002) Mechanisms involved in heart rate turbulence. Cardiac Electrophysiol Rev 6:262–266

    Google Scholar 

  58. Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, Camm AJ, Bigger JT Jr, Schömig A (1999) Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 353:1390–1396

    CAS  PubMed  Google Scholar 

  59. Watanabe MA, Marine JE, Sheldon R, Josephson ME (2002) Effects of ventricular premature stimulus coupling interval on blood pressure and heart rate turbulence. Circulation 106:325–330

    PubMed  Google Scholar 

  60. Melcher A, Donald DE (1981) Maintained ability of carotid baroreflex to regulate arterial pressure during exercise. Am J Physiol 241(Heart Circ Physiol 10):H838–H849

    CAS  PubMed  Google Scholar 

  61. Chapleau MW, Hajduczok G, Abboud FM (1989) Pulsatile activation of baroreceptors causes central facilitation of baroreflex. Am J Physiol 256(Heart Circ Physiol 25):H1735–H1741

    CAS  PubMed  Google Scholar 

  62. Richter DW, Keck W, Seller H (1970) The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pflugers Arch 317:110–123

    CAS  PubMed  Google Scholar 

  63. Oberg B, Kendrick ED, Thoren P, Wennergren G (1981) Reflex cardiovascular responses to graded stimulations of low- and high-threshold afferents in the carotid sinus and aortic nerves in the cat. Acta Physiol Scand 113:129–137

    CAS  PubMed  Google Scholar 

  64. Fan W, Schild JH, Andresen MC (1999) Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol 277(Regulatory Integrative Comp Physiol 46):R748–R756

    CAS  PubMed  Google Scholar 

  65. Ma X, Abboud FM, Chapleau MW (2002) Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol 283:R1033–R1040

    PubMed  Google Scholar 

  66. Salgado HC, Barale AR, Castania JA, Machado BH, Chapleau MW, Fazan R Jr (2007) Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol 292:H593–H600

    CAS  PubMed  Google Scholar 

  67. Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS (2007) Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension 49:1307–1314

    CAS  PubMed  Google Scholar 

  68. Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS (1967) Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N Engl J Med 277:1278–1283

    CAS  PubMed  Google Scholar 

  69. Doumas M, Guo D, Papademetriou V (2009) Carotid baroreceptor stimulation as a therapeutic target in hypertension and other cardiovascular conditions. Expert Opin Ther Targets 13:413–425

    PubMed  Google Scholar 

  70. Sapru HN, Gonzalez E, Krieger AJ (1981) Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull 6:393–398

    CAS  PubMed  Google Scholar 

  71. de Burgh Daly M (1997) Peripheral arterial chemoreceptors and respiratory-cardiovascular regulation. Monographs of the Physiological Society, vol 46. Oxford Medical Publications, Oxford

    Google Scholar 

  72. Somers VK, Mark AL, Abboud FM (1988) Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension 11:608–612

    CAS  PubMed  Google Scholar 

  73. Steinback CD, Salzer D, Medeiros PJ, Kowalchuk J, Shoemaker JK (2009) Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. Am J Physiol Regul Integr Comp Physiol 296:R402–R410

    CAS  PubMed  Google Scholar 

  74. Chua TP, Ponikowski PP, Harrington D, Chambers J, Coats AJS (1996) Contribution of peripheral chemoreceptors to ventilation and the effects of their suppression on exercise tolerance in chronic heart failure. Heart 76:483–489

    CAS  PubMed  Google Scholar 

  75. Blain GM, Smith CA, Henderson KS, Dempsey JA (2009) Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106:1564–1573

    PubMed  Google Scholar 

  76. Barros RCH, Bonagamba LGH, Okamoto-Canesin R, de Oliveira M, Branco LGS, Machado BH (2002) Cardiovascular responses to chemoreflex activation with potassium cyanide or hypoxic hypoxia in awake rats. Auton Neurosci 97:110–115

    CAS  PubMed  Google Scholar 

  77. Schaller B, Cornelius JF, Prabhakar H, Koerbel A, Gnanalingham K, Sandu N, Ottaviani G, Filis A, Buchfelder M (2009) The trigemino-cardiac reflex: an update of the current knowledge. J Neurosurg Anesthesiol 21:187–195

    PubMed  Google Scholar 

  78. Khurana RK, Wu R (2006) The cold face test: a non-baroreflex mediated test of cardiac vagal function. Clin Auton Res 16:202–207

    PubMed  Google Scholar 

  79. Al-Ani M, Powell L, West J, Townend J, Coote JH (1995) Exercise and diving, two conflicting stimuli influencing cardiac vagal tone in man. J Physiol 489(2):603–612

    CAS  PubMed  Google Scholar 

  80. McCulloch PF, DiNovo KM, Connolly TM (2010) The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats. Am J Physiol Regul Integr Comp Physiol 298:R224–R234

    CAS  PubMed  Google Scholar 

  81. Aviado DM, Aviado DG (2001) The Bezold-Jarisch reflex: a historical perspective of cardiopulmonary reflexes. Ann NY Acad Sci 940:48–58

    CAS  PubMed  Google Scholar 

  82. Ustinova EE, Schultz HD (1994) Activation of cardiac vagal afferents in ischemia and reperfusion: prostaglandins versus oxygen-derived free radicals. Circ Res 74:904–911

    CAS  PubMed  Google Scholar 

  83. Mark A (1983) The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1:90–102

    CAS  PubMed  Google Scholar 

  84. Cooper VL, Hainsworth R (2008) Head-up sleeping improves orthostatic tolerance in patients with syncope. Clin Auton Res 18:318–324

    PubMed  Google Scholar 

  85. Anrep GV, Pascual W, Rossler R (1936) Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond Ser B 119B:191–217

    Google Scholar 

  86. Koh J, Brown TE, Beightol LA, Eckberg DL (1998) Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations. J Auton Nerv Syst 68:89–95

    CAS  PubMed  Google Scholar 

  87. Longhurst JC, Tjen-A-Looi SC, Fu L-W (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion: mechanisms and reflexes. Ann N Y Acad Sci 940:74–95

    CAS  PubMed  Google Scholar 

  88. Malliani A (1982) Cardiovascular sympathetic afferent fibers. Rev Physiol Biochem Pharmacol 94:11–74

    Google Scholar 

  89. Wang W, Zucker IH (1996) Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am J Physiol 271(Regulatory Integrative Comp Physiol 40):R751–R756

    CAS  PubMed  Google Scholar 

  90. McWilliam PN, Yang T (1991) Inhibition of cardiac vagal component of baroreflex by group III and IV afferents. Am J Physiol 260(Heart Circ Physiol 29):H730–H734

    CAS  PubMed  Google Scholar 

  91. Al-Ani M, Robins K, Al-Khalidi AH, Vaile J, Townend J, Coote JH (1997) Isometric contraction of arm flexor muscles as a method of evaluating cardiac vagal tone in man. Clin Sci 92:175–180

    CAS  PubMed  Google Scholar 

  92. Gladwell VF, Fletcher J, Patel N, Elvidge LJ, Lloyd D, Chowdhary S, Coote JH (2005) The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J Physiol 567(2):713–721

    CAS  PubMed  Google Scholar 

  93. O’Leary DS (1993) Autonomic mechanisms of muscle metaboreflex control of heart rate. J Appl Physiol 74:1748–1754

    PubMed  Google Scholar 

  94. Murata J, Matsukawa K (2001) Cardiac vagal and sympathetic efferent discharges are differentially modified by stretch of skeletal muscle. Am J Physiol Heart Circ Physiol 280:H237–H245

    CAS  PubMed  Google Scholar 

  95. Kim JK, Hayes SG, Kindig AE, Kaufman MP (2007) Thin-fiber mechanoreceptors reflexly increase renal sympathetic nerve activity during static contraction. Am J Physiol Heart Circ Physiol 292:H866–H873

    CAS  PubMed  Google Scholar 

  96. McAllen RM, Spyer KM (1978) Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282:353–364

    CAS  PubMed  Google Scholar 

  97. McAllen RM, Spyer KM (1978) The baroreceptor input to cardiac vagal motoneurons. J Physiol 282:365–374

    CAS  PubMed  Google Scholar 

  98. Rentero N, Cividjian A, Trevaks D, Pequignot JM, Quintin L, McAllen RM (2002) Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol 283:R1327–R1334

    CAS  PubMed  Google Scholar 

  99. Nosaka S, Yasunaga K, Tamai S (1982) Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges. Am J Physiol 243(Regulatory Integrative and Comp Physiol 12):R92–R98

  100. Jones JFX, Wang Y, Jordan D (1998) Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J Physiol 507(3):869–880

    CAS  PubMed  Google Scholar 

  101. Iriuchijima J, Kumada M (1964) Activity of single vagal fibers efferent to the heart. Jpn J Physiol 14:479–487

    CAS  PubMed  Google Scholar 

  102. Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218:1030–1037

    CAS  PubMed  Google Scholar 

  103. Kunze DL (1972) Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol 222:1–15

    CAS  PubMed  Google Scholar 

  104. Davidson NS, Goldner S, McCloskey DI (1976) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol 259:523–530

    CAS  PubMed  Google Scholar 

  105. Ramadan MRM, Drinkhill MJ, Mary DASG (1989) The effect of distension of the urinary bladder on activity in efferent vagal fibres in anesthetized dogs. Q J Exp Physiol 74:493–501

    CAS  PubMed  Google Scholar 

  106. Cerati D, Schwartz PJ (1991) Single cardiac vagal fiber activity, acute myocardial ischemia, and risk for sudden death. Circ Res 69:1389–1401

    CAS  PubMed  Google Scholar 

  107. O’Leary DM, Jones JFX (2003) Discharge patterns of preganglionic neurons with axons in a cardiac vagal branch in the rat. Exp Physiol 88(6):711–723

    PubMed  Google Scholar 

  108. Geis GS, Kozelka JW, Wurster RD (1981) Organization and reflex control of vagal cardiomotor neurons. J Auton Nerv Syst 3:437–450

    CAS  PubMed  Google Scholar 

  109. Jones JFX, Wang Y, Jordan D (1995) Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rats, and rabbits. J Physiol 489(1):203–214

    CAS  PubMed  Google Scholar 

  110. Cheng Z, Zhang H, Guo SZ, Wurster R, Gozal D (2004) Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence. Am J Physiol Regul Integr Comp Physiol 286:625–633

    Google Scholar 

  111. Bonyhay I, Jokkel G, Karlocai K, Reneman R, Kollai M (1997) Effect of vasoactive drugs on carotid diameter in humans. Am J Physiol 273(Heart Circ Physiol 42):H1629–H1636

    CAS  PubMed  Google Scholar 

  112. Hunt BE, Fahy L, Farquhar WB, Taylor JA (2001) Quantification of mechanical and neural components of vagal baroreflex in humans. Hypertension 37:1362–1368

    CAS  PubMed  Google Scholar 

  113. Hunt BE, Farquhar WB, Taylor JA (2001) Does reduced vascular stiffening fully explain preserved cardiovagal baroreflex function in older, physically active men? Circulation 103:2424–2427

    CAS  PubMed  Google Scholar 

  114. Kornet L, Hoeks AP, Janssen BJ, Willigers JM, Reneman RS (2002) Carotid diameter variations as a non-invasive tool to examine carotid baroreceptor sensitivity. J Hypertens 20:1165–1173

    CAS  PubMed  Google Scholar 

  115. Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110:2307–2312

    PubMed  Google Scholar 

  116. Studinger P, Goldstein R, Taylor JA (2007) Mechanical and neural contributions to hysteresis in the cardiac vagal limb of the arterial baroreflex. J Physiol 583(3):1041–1048

    CAS  PubMed  Google Scholar 

  117. Ma X, Abboud FM, Chapleau MW (2003) Neurocardiovascular regulation in mice: experimental approaches and novel findings. Clin Exp Pharmacol Physiol 30:885–893

    CAS  PubMed  Google Scholar 

  118. Lin M, Liu R, Gozal D, Wead WB, Chapleau MW, Wurster R, Cheng Z (2007) Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol 293:H997–H1006

    CAS  PubMed  Google Scholar 

  119. Abramochkin DV, Nurullin LF, Borodinova AA, Tarasova NV, Sukhova GS, Nikolsky EE, Rosenshtraukh LV (2009) Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Exp Physiol 95(2):265–273

    PubMed  Google Scholar 

  120. Shimizu S, Akiyama T, Kawada T, Shishido T, Yamazaki T, Kamiya A, Mizuno M, Sano S, Sugimachi M (2009) In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node. Auton Neurosci 148:44–49

    CAS  PubMed  Google Scholar 

  121. Paton JFR, Butcher JW (1998) Cardiorespiratory reflexes in mice. J Auton Nerv Syst 68:115–124

    CAS  PubMed  Google Scholar 

  122. Paton JFR (1998) Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. J Neurophysiol 79:2365–2373

    CAS  PubMed  Google Scholar 

  123. Potts JT, Spyer KM, Paton JFR (2000) Somatosympathetic reflex in a working heart-brainstem preparation of the rat. Brain Res Bull 53:59–67

    CAS  PubMed  Google Scholar 

  124. Nalivaiko E, Antunes VR, Paton JFR (2009) Control of cardiac contractility in the rat working heart-brainstem preparation. Exp Physiol 95(1):107–119

    PubMed  Google Scholar 

  125. Mohan RM, Heaton DA, Danson EJF, Krishnan SPR, Cai S, Channon KM, Paterson DJ (2002) Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function. Circ Res 91:1089–1091

    CAS  PubMed  Google Scholar 

  126. Brack KE, Coote JH, Ng GA (2009) Vagus nerve stimulation inhibits the increase in Ca2+ transient and left ventricular force caused by sympathetic nerve stimulation but has no direct effects alone—epicardial Ca2+ fluorescence studies using fura-2 AM in the isolated innervated beating rabbit heart. Exp Physiol 95(1):80–92

    PubMed  Google Scholar 

  127. Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, Mettenleiter TC, Mendelowitz D (2001) Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann NY Acad Sci 940:237–246

    CAS  PubMed  Google Scholar 

  128. Neff RA, Wang J, Baxi S, Evans C, Mendelowitz D (2003) Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ Res 93:565–572

    CAS  PubMed  Google Scholar 

  129. Adams DJ, Harper AA (1995) Electrophysiological properties of autonomic ganglion neurons. In: McLachlan EM (ed) Autonomic ganglia. Harwood Academic Publishers, Reading, pp 153–212

    Google Scholar 

  130. Ardell JL, Randall WC (1986) Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 251(Heart Circ Physiol 20):H764–H773

    CAS  PubMed  Google Scholar 

  131. Sampaio KN, Mauad H, Spyer KM, Ford TW (2003) Differential chronotropic and dromotropic response to focal stimulation of cardiac vagal ganglia in the rat. Exp Physiol 88(3):315–327

    PubMed  Google Scholar 

  132. Quan KJ, Lee JH, Van Hare GF, Biblo LA, Mackall JA, Carlson MD (2002) Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol 13:735–739

    PubMed  Google Scholar 

  133. Gray AL, Johnson TA, Ardell JL, Massari VJ (2004) Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol 96:2273–2278

    PubMed  Google Scholar 

  134. Johnson TA, Gray AL, Lauenstein J-M, Newton SS, Massari VJ (2004) Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol 96:2265–2272

    PubMed  Google Scholar 

  135. Casadei B (2001) Vagal control of myocardial contractility in humans. Exp Physiol 86(6):817–823

    CAS  PubMed  Google Scholar 

  136. Chiou C-W, Zipes DP (1998) Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. Circulation 98:360–368

    CAS  PubMed  Google Scholar 

  137. Inoue H, Zipes DP (1987) Changes in atrial and ventricular refractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circ Res 60:942–951

    CAS  PubMed  Google Scholar 

  138. Scanavacca M, Hachul D, Pisani C, Sosa E (2009) Selective vagal denervation of the sinus and atrioventricular nodes, guided by vagal reflexes induced by high frequency stimulation, to treat refractory neurally mediated syncope. J Cardiovasc Electrophysiol 20:558–563

    PubMed  Google Scholar 

  139. Tsutsumi T, Ide T, Yamato M, Kudou W, Andou M, Hirooka Y, Utsumi H, Tsutsui H, Sunagawa K (2008) Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovasc Res 77:713–721

    CAS  PubMed  Google Scholar 

  140. Freeling J, Wattier K, LaCroix C, Li Y-F (2007) Neostigmine and pilocarpine attenuated tumour necrosis factor α expression and cardiac hypertrophy in the heart with pressure overload. Exp Physiol 93(1):75–82

    PubMed  Google Scholar 

  141. Handa T, Katare RG, Kakinuma Y, Arikawa M, Ando M, Sasaguri S, Yamasaki Y, Sato T (2009) Anti-Alzheimer’s drug, donepezil, markedly improves long-term survival after chronic heart failure in mice. J Cardiac Fail 15:805–811

    CAS  Google Scholar 

  142. Okazaki Y, Zheng C, Li M, Sugimachi M (2010) Effect of the cholinesterase inhibitor donepezil on cardiac remodeling and autonomic balance in rats with heart failure. J Physiol Sci 60:67–74

    CAS  PubMed  Google Scholar 

  143. Kakinuma Y, Akiyama T, Sato T (2009) Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J 276:5111–5125

    CAS  PubMed  Google Scholar 

  144. Hoover DB, Isaacs ER, Jacques F, Hoard JL, Page P, Armour JA (2009) Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 164:1170–1179

    CAS  PubMed  Google Scholar 

  145. Herring N, Paterson DJ (2008) Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp Physiol 94(1):46–53

    PubMed  Google Scholar 

  146. Caffrey JL (1999) Enkephalin inhibits vagal control of heart rate, contractile force and coronary blood flow in the canine heart in vivo. J Auton Nerv Syst 76:75–82

    CAS  PubMed  Google Scholar 

  147. Farias M III, Jackson K, Johnson M, Caffrey JL (2003) Cardiac enkephalins attenuate vagal bradycardia: Interactions with NOS-1-cGMP systems in canine sinoatrial node. Am J Physiol Heart Circ Physiol 285:H2001–H2012

    CAS  PubMed  Google Scholar 

  148. Danson EJ, Li D, Wang L, Dawson TA, Paterson DJ (2009) Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J Mol Cell Cardiol 46:482–489

    CAS  PubMed  Google Scholar 

  149. Parmer RJ, Cervenka JH, Stone RA (1992) Baroreflex sensitivity and heredity in essential hypertension. Circulation 85:497–503

    CAS  PubMed  Google Scholar 

  150. Sinnreich R, Friedlander Y, Sapoznikov D, Kark JD (1998) Familial aggregation of heart rate variability based on short recordings–the kibbutzim family study. Hum Genet 103:34–40

    CAS  PubMed  Google Scholar 

  151. Singh JP, Larson MG, O’Donnell CJ et al (1999) Heritability of heart rate variability: the Framingham Heart Study. Circulation 99:2251–2254

    CAS  PubMed  Google Scholar 

  152. Singh JP, Larson MG, O’Donnell CJ et al (2002) Genome scan linkage results for heart rate variability (the Framingham Heart Study). Am J Cardiol 90:1290–1293

    PubMed  Google Scholar 

  153. Tank J, Jordan J, Diedrich A, Stoffels M, Franke G, Faulhaber H-D, Luft FC, Busjahn A (2001) Genetic influences on baroreflex function in normal twins. Hypertension 37:907–910

    CAS  PubMed  Google Scholar 

  154. Maver J, Strucl M, Accetto R (2004) Autonomic nervous system activity in normotensive subjects with a family history of hypertension. Clin Auton Res 14:369–375

    PubMed  Google Scholar 

  155. Uusitalo ALT, Vanninen E, Levalahti E, Battie MC, Videman T, Kaprio J (2007) Role of genetic and environmental influences on heart rate variability in middle-aged men. Am J Physiol Heart Circ Physiol 293:H1013–H1022

    CAS  PubMed  Google Scholar 

  156. Ylitalo A, Airaksinen KE, Hautanen A, Kupari M, Carson M, Virolainen J, Savolainen M, Kauma H, Kesaniemi YA, White PC, Huikuri HV (2000) Baroreflex sensitivity and variants of the renin angiotensin system genes. J Am Coll Cardiol 35:194–200

    CAS  PubMed  Google Scholar 

  157. Gollasch M, Tank J, Luft FC, Jordan J, Maass P, Krasko C, Sharma AM, Busjahn A, Bahring S (2002) The BK channel β1 subunit gene is associated with human baroreflex and blood pressure regulation. J Hypertens 20:927–933

    CAS  PubMed  Google Scholar 

  158. Girard A, Sidi D, Aggoun Y, Laude D, Bonnet D, Elghozi JL (2002) Elastin mutation is associated with a reduced gain of the baroreceptor-heart rate reflex in patients with Williams syndrome. Clin Auton Res 12:72–77

    PubMed  Google Scholar 

  159. Hautala AJ, Rankinen T, Kiviniemi AM, Makikallio TH, Huikuri HV, Bouchard C, Tulppo MP (2006) Heart rate recovery after maximal exercise is associated with acetylcholine receptor M2 (CHRM2) gene polymorphism. Am J Physiol Heart Circ Physiol 291:H459–H466

    CAS  PubMed  Google Scholar 

  160. Hautala AJ, Tulppo MP, Kiviniemi AM, Rankinen T, Bouchard C, Makikallio TH, Huikuri HV (2009) Acetylcholine receptor M2 gene variants, heart rate recovery, and risk of cardiac death after an acute myocardial infarction. Ann Med 41:197–207

    CAS  PubMed  Google Scholar 

  161. Probst-Hensch NM, Imboden M, Dietrich DF, Barthelemy J-C, Ackermann-Liebrich U, Berger W, Gaspoz J-M, Schwartz J (2008) Glutathione S-transferase polymorphisms, passive smoking, obesity, and heart rate variability in nonsmokers. Environ Health Perspect 116:1494–1499

    PubMed  Google Scholar 

  162. Matsunaga T, Gu N, Yamazaki H, Tsuda M, Adachi T, Yasuda K, Moritani T, Tsuda K, Nonaka M, Nishiyama T (2009) Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men. J Hypertens 27:305–313

    CAS  PubMed  Google Scholar 

  163. Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114

    CAS  PubMed  Google Scholar 

  164. Choate JK, Danson EJF, Morris JF, Paterson DJ (2001) Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am J Physiol Heart Circ Physiol 281:H2310–H2317

    CAS  PubMed  Google Scholar 

  165. Cogliati T, Good DJ, Haigney M, Delgado-Romero P, Eckhaus MA, Koch WJ, Kirsch IR (2002) Predisposition to arrhythmia and autonomic dysfunction in Nhlh1-deficient mice. Mol Cell Biol 22:4977–4983

    CAS  PubMed  Google Scholar 

  166. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64:885–897

    CAS  PubMed  Google Scholar 

  167. Sabharwal R, Zhang Z, Lu Y, Abboud FM, Russo AF, Chapleau MW (2010) Receptor activity-modifying protein 1 increases baroreflex sensitivity and attenuates angiotensin-induced hypertension. Hypertension 55:627–635

    CAS  PubMed  Google Scholar 

  168. Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL (2010) Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden death in epilepsy. J Neurosci 30:5167–5175

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the numerous contributions made by investigators worldwide to development of methods to assess cardiovagal nerve activity and its reflex control, which formed the basis of this review article. Unfortunately, due to space limitations, many important publications on this subject could not be cited, for which we apologize. The authors thank Harald M. Stauss, MD, PhD at the University of Iowa for his helpful comments on the manuscript. The author’s research into mechanisms of autonomic regulation has been funded by the National Institutes of Health (HL14388), the Department of Veterans Affairs, and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Chapleau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapleau, M.W., Sabharwal, R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev 16, 109–127 (2011). https://doi.org/10.1007/s10741-010-9174-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9174-6

Keywords

Navigation