Skip to main content

Neural Regulation of the Heart in Health and Disease

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

Understanding of the role of autonomic nervous system activity in health and disease has continued to evolve in a fascinating and productive manner. Significant strides have been made in recent years to elucidate the intricacies of neural control of heart rhythm and the mechanisms whereby excess sympathetic nerve activity can provoke life-threatening arrhythmias. Autonomic factors impact the genesis of both atrial and ventricular arrhythmias. Of particular significance is our increased recognition of the importance of the process of neural remodeling following myocardial infarction, which has provided important clues regarding the factors that impact on recovery of risk for sudden death. The role of behavioral influences including intense emotion and sleep states are also reviewed.

New clinical tools have been developed for evaluating neurocardiac interactions including heart rate turbulence, deceleration capacity, and T-wave alternans. These noninvasive ECG-based parameters have proved to be clinically useful in identifying individuals who are at risk for life-threatening arrhythmias.

Promising nerve stimulation strategies including vagus nerve activation and spinal cord stimulation have progressed from animal testing to clinical trials. Progress in both the experimental and clinical domains is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345:1473–82.

    PubMed  CAS  Google Scholar 

  2. Verrier RL. Central nervous system modulation of cardiac rhythm. In: Rosen MR, Palti Y, editors. Lethal arrhythmias resulting from myocardial ischemia and infarction. Boston: Kluwer Academic Publishers; 1988. p. 149–64.

    Google Scholar 

  3. La Rovere MT, Bigger Jr JT, Marcus FI, et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478–84.

    PubMed  Google Scholar 

  4. Bauer A, Malik M, Schmidt G, et al. Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use. International Society for Holter and Noninvasive Electrocardiology Consensus. J Am Coll Cardiol. 2008;52:1353–65.

    PubMed  Google Scholar 

  5. Bauer A, Kantelhardt JW, Barthel P, et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet. 2006;367:1674–81.

    PubMed  Google Scholar 

  6. Verrier RL, Klingenheben T, Malik M, et al. Microvolt T-wave alternans: physiologic basis, methods of measurement, and clinical utility. Consensus guideline by the International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol. 2011;44:1309–24. doi:10.1016/j.jacc.2011.06.029. PMID:21920259.

    Google Scholar 

  7. Lathrop DA, Spooner PM. On the neural connection. J Cardiovasc Electrophysiol. 2001;12:841–4.

    PubMed  CAS  Google Scholar 

  8. Verrier RL, Kumar K, Nearing BD. Basis for sudden cardiac death prediction by T-wave alternans from an integrative physiology perspective. Heart Rhythm. 2009;6:416–22.

    PubMed  Google Scholar 

  9. Cutler MJ, Rosenbaum DS. Explaining the clinical manifestations of T wave alternans in patients at risk for sudden cardiac death. Heart Rhythm. 2009;6:S22–8.

    PubMed  Google Scholar 

  10. Weiss JN, Nivala M, Garfinkel A, et al. Alternans and arrhythmias: from cell to heart. Circ Res. 2011;108:98–112.

    PubMed  CAS  Google Scholar 

  11. Verrier RL, Nieminen T. T-wave alternans as a therapeutic marker for antiarrhythmic agents. J Cardiovasc Pharmacol. 2010;55(6):544–54.

    PubMed  CAS  Google Scholar 

  12. Nieminen T, Lehtimaki T, Viik J, et al. T-wave alternans predicts mortality in a population undergoing a clinically indicated exercise test. Eur Heart J. 2007;28:2332–7.

    PubMed  Google Scholar 

  13. Minkkinen M, Kahonen M, Viik J, et al. Enhanced predictive power of quantitative TWA during routine exercise testing in the Finnish Cardiovascular Study. J Cardiovasc Electrophysiol. 2009;20:408–15.

    PubMed  Google Scholar 

  14. Zhou S, Jung BC, Tan AY, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmias in a canine model of sudden cardiac death. Heart Rhythm. 2008;5:131–9.

    PubMed  Google Scholar 

  15. Lombardi F, Verrier RL, Lown B. Relationship between sympathetic neural activity, coronary dynamics, and vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion. Am Heart J. 1983;105:958–65.

    PubMed  CAS  Google Scholar 

  16. Nearing BD, Huang AH, Verrier RL. Dynamic tracking of cardiac vulnerability by complex demodulation of the T-wave. Science. 1991;252:437–40.

    PubMed  CAS  Google Scholar 

  17. Nearing BD, Oesterle SN, Verrier RL. Quantification of ischaemia-induced vulnerability by precordial T-wave alternans analysis in dog and human. Cardiovasc Res. 1994;28:1440–9.

    PubMed  CAS  Google Scholar 

  18. Corbalan R, Verrier RL, Lown B. Differing mechanisms for ventricular vulnerability during coronary artery occlusion and release. Am Heart J. 1976;92:223–30.

    PubMed  CAS  Google Scholar 

  19. Elharrar V, Zipes DP. Cardiac electrophysiologic alterations during myocardial ischemia. Am J Physiol. 1977;233:H329–45.

    PubMed  CAS  Google Scholar 

  20. Patterson E, Jackman WM, Beckman KJ, et al. Spontaneous pulmonary vein firing in man: relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro. J Cardiovasc Electro­physiol. 2007;18:1067–75.

    PubMed  Google Scholar 

  21. Tan AY, Zhou S, Ogawa M, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118:916–25.

    PubMed  Google Scholar 

  22. Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation. 2003;107:2355–60.

    PubMed  Google Scholar 

  23. Tan AY, Zhou S, Jung BC, et al. Ectopic atrial arrhythmias arising from canine thoracic veins during in-vivo stellate ganglia stimulation. Am J Physiol Heart Circ Physiol. 2008;295:H691–8.

    PubMed  CAS  Google Scholar 

  24. Patterson E, Po SS, Scherlag BJ, et al. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–31.

    PubMed  Google Scholar 

  25. Opie LH. Heart physiology: from cell to circulation. 4th ed. Philadelphia: Lippincott, Williams & Wilkins; 2004.

    Google Scholar 

  26. Lee HC, Mohabir R, Smith N, et al. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation. 1988;78:1047–59.

    PubMed  CAS  Google Scholar 

  27. Euler DE. Cardiac alternans: mechanisms and pathophysiological significance. Cardiovasc Res. 1999;42:583–90.

    PubMed  CAS  Google Scholar 

  28. Kovach JA, Nearing BD, Verrier RL. An angerlike behavioral state potentiates myocardial ischemia-induced T-wave alternans in canines. J Am Coll Cardiol. 2001;37:1719–25.

    PubMed  CAS  Google Scholar 

  29. Verrier RL, Thompson PL, Lown B. Ventricular vulnerability during sympathetic stimulation: role of heart rate and blood pressure. Cardiovasc Res. 1974;8:602–10.

    PubMed  CAS  Google Scholar 

  30. Zhou S, Paz O, Cao JM, et al. Differential beta-­adrenoceptor expression induced by nerve growth factor infusion into the canine right and left stellate ganglia. Heart Rhythm. 2005;2:1347–55.

    PubMed  Google Scholar 

  31. Zhou S, Tan AY, Paz O, et al. Antiarrhythmic effects of beta3-adrenergic receptor stimulation in a canine model of ventricular tachycardia. Heart Rhythm. 2008;5:289–97.

    PubMed  Google Scholar 

  32. Gauthier C, Langin D, Balligant J-L. Beta3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci. 2000;21:426–31.

    PubMed  CAS  Google Scholar 

  33. Verrier RL. Beta3-adrenoceptors: friend or foe? Heart Rhythm. 2005;2:1356–8.

    PubMed  Google Scholar 

  34. Schwartz PJ, Stone HL. Tonic influence of the sympathetic nervous system on myocardial reactive hyperemia and on coronary blood flow distribution in dogs. Circ Res. 1977;41:51–8.

    PubMed  CAS  Google Scholar 

  35. Mohrman ED, Feigl EO. Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res. 1978;42:79–86.

    PubMed  Google Scholar 

  36. Verrier RL, Calvert A, Lown B, et al. Effect of acute blood pressure elevation on the ventricular fibrillation threshold. Am J Physiol. 1974;226:893–7.

    PubMed  CAS  Google Scholar 

  37. Kowey PR, Verrier RL, Lown B. Effect of alpha-adrenergic receptor stimulation on ventricular electrical properties in the normal canine heart. Am Heart J. 1983;105:366–71.

    PubMed  CAS  Google Scholar 

  38. Lown B, Verrier RL. Neural activity and ventricular fibrillation. N Engl J Med. 1976;294:1165–70.

    PubMed  CAS  Google Scholar 

  39. Kolman BS, Verrier RL, Lown B. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle. Role of sympathetic-parasympathetic interactions. Circulation. 1975;52:578–85.

    PubMed  CAS  Google Scholar 

  40. Matta RJ, Verrier RL, Lown B. Repetitive extrasystole as an index of vulnerability to ventricular fibrillation. Am J Physiol. 1976;230:1469–73.

    PubMed  CAS  Google Scholar 

  41. Rabinowitz SH, Verrier RL, Lown B. Muscarinic effects of vagosympathetic trunk stimulation on the repetitive extrasystole (RE) threshold. Circulation. 1976;53:622–7.

    PubMed  CAS  Google Scholar 

  42. Danilo Jr P, Rosen MR, Hordof AJ. Effects of acetylcholine on the ventricular specialized conducting system of neonatal and adult dogs. Circ Res. 1978;43:777–84.

    PubMed  CAS  Google Scholar 

  43. Levy MN, Blattberg B. Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res. 1976;38:81–4.

    PubMed  CAS  Google Scholar 

  44. Zuanetti G, DeFerrari GM, Priori SG, et al. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res. 1987;61:429–35.

    PubMed  CAS  Google Scholar 

  45. Vanoli E, De Ferrari GM, Stramba-Badiale M, et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.

    PubMed  CAS  Google Scholar 

  46. Tan AY, Li H, Wachsmann-Hogiu S, et al. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial fibrillation. J Am Coll Cardiol. 2006;48(1):132–43.

    PubMed  Google Scholar 

  47. Bettoni M, Zimmerman M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105:2753–9.

    PubMed  Google Scholar 

  48. Sharifov OF, Fedorov VV, Beloshapko GG, et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol. 2004;43:483–90.

    PubMed  CAS  Google Scholar 

  49. Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation. 1982;66:874–80.

    PubMed  CAS  Google Scholar 

  50. Billman GE, Schwartz PJ, Stone HL. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation. 1984;69:1182–9.

    PubMed  CAS  Google Scholar 

  51. Hull Jr SS, Vanoli E, Adamson PB, et al. Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation. 1994;89:548–52.

    PubMed  Google Scholar 

  52. La Rovere MT, Bersano C, Gnemmi M, et al. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation. 2002;106:945–9.

    PubMed  Google Scholar 

  53. Lin LY, Lai LP, Lin JL, et al. Tight mechanism correlation between heart rate turbulence and baroreflex sensitivity: sequential autonomic blockade analysis. J Cardiovasc Electrophysiol. 2002;13:427–31.

    PubMed  Google Scholar 

  54. Schmidt G, Malik M, Barthel P, et al. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 1999;353:1390–6.

    PubMed  CAS  Google Scholar 

  55. Ghuran A, Reid F, La Rovere MT, et al. Heart rate turbulence-based predictors of fatal and nonfatal cardiac arrest (The Autonomic Tone and Reflexes After Myocardial Infarction substudy). Am J Cardiol. 2002;89:184–90.

    PubMed  Google Scholar 

  56. Bonnemeier H, Wiegand UK, Friedlbinder J, et al. Reflex cardiac activity in ischemia and ­reperfusion: heart rate turbulence in patients undergoing direct percutaneous coronary intervention for acute myocardial infarction. Circulation. 2003;108:958–64.

    PubMed  Google Scholar 

  57. Armour JA. Intrinsic cardiac neurons. J Cardiovasc Electrophysiol. 1991;2:331–41.

    Google Scholar 

  58. Randall WC, Ardell JL. Selective parasympathectomy of automatic and conductile tissues of the canine heart. Am J Physiol. 1985;248:H61–8.

    PubMed  CAS  Google Scholar 

  59. Chiou CW, Eble JN, Zipes DP. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation. 1997;95:2573–84.

    PubMed  CAS  Google Scholar 

  60. Choi EK, Shen MJ, Han S, et al. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation. 2010;121:2615–23.

    PubMed  Google Scholar 

  61. Verrier RL, Zhao SX. The enigmatic cardiac fat pads: critical but underappreciated neural regulatory sites. J Cardiovasc Electrophysiol. 2002;13:902–3.

    PubMed  Google Scholar 

  62. Armour JA. Myocardial ischaemia and the cardiac nervous system. Cardiovasc Res. 1999;41:41–54.

    PubMed  CAS  Google Scholar 

  63. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.

    PubMed  CAS  Google Scholar 

  64. Randall WC, Wurster RD, Duff M, et al. Surgical interruption of postganglionic innervation of the sinoatrial nodal region. J Thorac Cardiovasc Surg. 1991;101:66–74.

    PubMed  CAS  Google Scholar 

  65. Nakajima K, Furukawa Y, Kurogouchi F, et al. Autonomic control of the location and rate of the cardiac pacemaker in the sinoatrial fat pad of parasympathetically denervated dog hearts. J Cardiovasc Electrophysiol. 2002;13:896–901.

    PubMed  Google Scholar 

  66. Olgin JE, Sih HJ, Hanish S, et al. Heterogeneous atrial denervation creates substrate for sustained atrial fibrillation. Circulation. 1998;98:2608–14.

    PubMed  CAS  Google Scholar 

  67. Jayachandran JV, Sih HJ, Winkle W, et al. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation. 2000;101:1185–91.

    PubMed  CAS  Google Scholar 

  68. Cao JM, Fishbein MC, Han JB, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    PubMed  CAS  Google Scholar 

  69. Chang CM, Wu TJ, Zhou S, et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation. 2001;103:22–5.

    PubMed  CAS  Google Scholar 

  70. Chen PS, Chen LS, Cao JM, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409–16.

    PubMed  CAS  Google Scholar 

  71. Tsai J, Cao JM, Zhou S, et al. T wave alternans as a predictor of spontaneous ventricular tachycardia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol. 2002;13:51–5.

    PubMed  Google Scholar 

  72. Verrier RL, Kwaku KF. Frayed nerves in myocardial infarction: the importance of rewiring. Circ Res. 2004;94:5–6.

    Google Scholar 

  73. Liu YB, Wu CC, Lu LS, et al. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res. 2003;92:1145–52.

    PubMed  CAS  Google Scholar 

  74. Lown B, Verrier RL, Corbalan R. Psychologic stress and threshold for repetitive ventricular response. Science. 1973;182:834–6.

    PubMed  CAS  Google Scholar 

  75. Corbalan R, Verrier RL, Lown B. Psychological stress and ventricular arrhythmias during myocardial infarction in the conscious dog. Am J Cardiol. 1974;34:692–6.

    PubMed  CAS  Google Scholar 

  76. Verrier RL, Hagestad EL, Lown B. Delayed myocardial ischemia induced by anger. Circulation. 1987;75:249–54.

    PubMed  CAS  Google Scholar 

  77. Mittleman MA, Maclure M, Sherwood JB, et al. Triggering of acute myocardial infarction onset by episodes of anger. Circulation. 1995;92:1720–5.

    PubMed  CAS  Google Scholar 

  78. Verrier RL, Mittleman MA. Life-threatening cardiovascular consequences of anger in patients with coronary heart disease. Cardiol Clin. 1996;14:289–307.

    Google Scholar 

  79. Lampert R, Joska T, Burg MM, et al. Emotional and physical precipitants of ventricular arrhythmia. Circulation. 2002;106:1800–5.

    PubMed  Google Scholar 

  80. Fries R, Konig J, Schafers HJ, et al. Triggering effect of physical and mental stress on spontaneous ventricular tachyarrhythmias in patients with implantable cardioverter-defibrillators. Clin Cardiol. 2002;25:474–8.

    PubMed  Google Scholar 

  81. Kop WJ, Krantz DS, Nearing BD, et al. Effects of acute mental and exercise stress on T-wave alternans in patients with implantable cardioverter defibrillators and controls. Circulation. 2004;109:1864–9.

    PubMed  Google Scholar 

  82. Nearing BD, Verrier RL. Modified moving average method for T-wave alternans analysis with high accuracy to predict ventricular fibrillation. J Appl Physiol. 2002;92:541–9.

    PubMed  Google Scholar 

  83. Nearing BD, Verrier RL. Progressive increases in complexity of T-wave oscillations herald ischemia-induced VF. Circ Res. 2002;91:727–32.

    PubMed  CAS  Google Scholar 

  84. Nearing BD, Verrier RL. Tracking heightened cardiac electrical instability by computing interlead heterogeneity of T-wave morphology. J Appl Physiol. 2003;95:2265–72.

    PubMed  Google Scholar 

  85. Shusterman V, Goldberg A, London B. Upsurge in T-wave alternans and nonalternating repolarization instability precedes spontaneous initiation of ventricular tachyarrhythmias in humans. Circulation. 2006;113:2880–7.

    PubMed  Google Scholar 

  86. Verrier RL, Nearing BD, LaRovere MT, et al. Ambulatory ECG-based tracking of T-wave alternans in post-myocardial infarction patients to assess risk of cardiac arrest or arrhythmic death. J Cardiovasc Electrophysiol. 2003;14:705–11.

    PubMed  Google Scholar 

  87. Hou Y, Fang PH, Wu Y, et al. Prediction of sudden cardiac death in patients after acute myocardial infarction using T-wave alternans: a prospective study. J Electrocardiol. 2012;45:60–5.

    Google Scholar 

  88. Stein PK, Sanghavi D, Domitrovich PP, et al. Ambulatory ECG-based T-wave alternans predicts sudden cardiac death in high-risk post-MI patients with left ventricular dysfunction in the EPHESUS study. J Cardiovasc Electrophysiol. 2008;19:1037–42.

    PubMed  Google Scholar 

  89. Stein PK, Sanghavi D, Sotoodehnia N, et al. Association of Holter-based measures including T-wave alternans with risk of sudden cardiac death in the community-dwelling elderly: the cardiovascular health study. J Electrocardiol. 2010;43:251–9.

    PubMed  Google Scholar 

  90. Sakaki K, Ikeda T, Miwa Y, et al. Time-domain T-wave alternans measured from Holter electrocardiograms predicts cardiac mortality in patients with left ventricular dysfunction: a prospective study. Heart Rhythm. 2009;6:332–7.

    PubMed  Google Scholar 

  91. Lavery CE, Mittleman MA, Cohen MC, et al. Nonuniform nighttime distribution of acute cardiac events: a possible effect of sleep states. Circulation. 1997;96:3321–7.

    PubMed  CAS  Google Scholar 

  92. Verrier RL, Josephson ME. Impact of sleep on arrhythmogenesis. Circ Arrhythm Electrophysiol. 2009;2:450–9.

    PubMed  Google Scholar 

  93. Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52:686–717.

    PubMed  Google Scholar 

  94. Takasugi N, Kubota T, Nishigaki K, et al. Continuous T-wave alternans monitoring to predict impending life-threatening cardiac arrhythmias during emergent coronary reperfusion therapy in patients with acute coronary syndrome. Europace. 2011;13:708–15.

    PubMed  Google Scholar 

  95. Scherlag BJ, Nakagawa H, Jackman WM, et al. Electrical stimulation to identify neural elements on the heart: their role in atrial fibrillation. J Interv Card Electrophysiol. 2005;13 Suppl 1:37–42.

    PubMed  Google Scholar 

  96. Scanavacca M, Pisani CF, Hachul D, et al. Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. Circulation. 2006;114:876–85.

    PubMed  Google Scholar 

  97. Ohkubo K, Watanabe I, Okumura Y, et al. Combined effect of pulmonary vein isolation and ablation of cardiac autonomic nerves for atrial fibrillation. Int Heart J. 2008;49:661–70.

    PubMed  Google Scholar 

  98. Bagge L, Blomstrom P, Nilsson L, et al. Epicardial off-pump pulmonary vein isolation and vagal denervation improve long-term outcome and quality of life in patients with atrial fibrillation. J Thorac Cardiovasc Surg. 2009;137:1265–71.

    PubMed  Google Scholar 

  99. Katritsis DG, Giazitzoglou E, Zografos T, et al. Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm. 2011;8:672–8.

    PubMed  Google Scholar 

  100. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285:903–4.

    PubMed  CAS  Google Scholar 

  101. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004;109:1826–33.

    PubMed  Google Scholar 

  102. Oh S, Choi EK, Choi YS. Short-term autonomic denervation of the atria using botulinum toxin. Korean Circ J. 2010;40:387–90.

    PubMed  Google Scholar 

  103. Stavrakis S, Scherlag BJ, Fan Y, et al. Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23:771–7.

    Google Scholar 

  104. Yu L, Scherlag BJ, Dormer K, et al. Autonomic denervation with magnetic nanoparticles. Circulation. 2010;122:2653–9.

    PubMed  CAS  Google Scholar 

  105. Issa ZF, Zhou X, Ujhelyi MR, et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation. 2005;111:3217–20.

    PubMed  Google Scholar 

  106. Ferrero P, Castagno D, Massa R, et al. Spinal cord stimulation affects T-wave alternans in patients with ischaemic cardiomyopathy: a pilot study. Europace. 2008;10:506–8.

    PubMed  Google Scholar 

  107. De Ferrari GM, Crijns HJ, Borggrefe M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–55.

    PubMed  Google Scholar 

  108. Shen MJ, Shinohara T, Park HW, et al. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation. 2011;123:2204–12.

    PubMed  Google Scholar 

  109. Guzik P, Schmidt G. A phenomenon of heart-rate turbulence, its evaluation, and prognostic value. Card Electrophysiol Rev. 2002;6:256–61.

    PubMed  Google Scholar 

Download references

Acknowledgements.

The authors thank Sandra S. Verrier for her editorial assistance.

Funding

No financial support was received for preparation of this review.

Disclosures

Dr. Verrier receives royalty income from Georgetown University and Beth Israel Deaconess Medical Center for intellectual property licensed to GE Healthcare and to Medtronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Verrier PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Verrier, R.L., Tan, A. (2013). Neural Regulation of the Heart in Health and Disease. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics