Skip to main content
Log in

Parasympathetic Vagal Control of Cardiac Function

  • Hypertension and the Brain (S Stocker, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

This brief review focuses on four new topics, with novel and clinically significant consequences, concerning the powerful influence of parasympathetic activity on cardiac function. In this short summary, we will highlight very recent and important work, published in the last 3–4 years, that (1) challenges the paradigm that parasympathetic activity to the heart is involved in the control of heart rate but plays little role in other cardiac functions, (2) characterizes important long-range synaptic pathways to parasympathetic cardiac vagal neurons that are involved in “higher” brain functions (such as arousal and emotional challenges), (3) asks whether implantable chronic vagal nerve stimulation is a promising clinical tool for treating cardiovascular diseases, and (4) describes newly identified neuropeptides and other modulators that can influence the generation and maintenance of parasympathetic activity to the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res. 2012;95(4):487–94. doi:10.1093/cvr/cvs212. Gorine and colleagues found that increasing the activity of cholinergic vagal preganglionic neurons in the dorsal motor nucleus of the vagus (DMNX) protects left ventricular cardiomyocytes from ischemia/reperfusion injury while silencing DMNX neurons alters ventricular excitability, indicating parasympathetic activity to the heart can significantly alter electrical and mechanical function in the ventricles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kovach JA, Gottdiener JS, Verrier RL. Vagal modulation of epicardial coronary artery size in dogs. A two-dimensional intravascular ultrasound study. Circulation. 1995;92(8):2291–8.

    Article  CAS  PubMed  Google Scholar 

  3. Reid JV, Ito BR, Huang AH, Buffington CW, Feigl EO. Parasympathetic control of transmural coronary blood flow in dogs. Am J Physiol. 1985;249(2 Pt 2):H337–43.

    CAS  PubMed  Google Scholar 

  4. Machhada A, Ang R, Ackland GL, Ninkina N, Buchman VL, Lythgoe MF, et al. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart Rhythm. 2015;12(11):2285–93. doi:10.1016/j.hrthm.2015.06.005. Gorine and colleagues found that increasing the activity of cholinergic vagal preganglionic neurons in the dorsal motor nucleus of the vagus (DMNX) protects left ventricular cardiomyocytes from ischemia/reperfusion injury while silencing DMNX neurons alters ventricular excitability, indicating parasympathetic activity to the heart can significantly alter electrical and mechanical function in the ventricles.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ulphani JS, Cain JH, Inderyas F, Gordon D, Gikas PV, Shade G, et al. Quantitative analysis of parasympathetic innervation of the porcine heart. Heart Rhythm. 2010;7(8):1113–9. doi:10.1016/j.hrthm.2010.03.043.

    Article  PubMed  Google Scholar 

  6. Dickerson LW, Rodak DJ, Fleming TJ, Gatti PJ, Massari VJ, McKenzie JC, et al. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton Nerv Syst. 1998;70(1–2):129–41.

    Article  CAS  PubMed  Google Scholar 

  7. Lewis ME, Al-Khalidi AH, Bonser RS, Clutton-Brock T, Morton D, Paterson D, et al. Vagus nerve stimulation decreases left ventricular contractility in vivo in the human and pig heart. J Physiol. 2001;534(Pt. 2):547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mendelowitz D. Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. Am J Physiol. 1996;271(6 Pt 2):H2609–14.

    CAS  PubMed  Google Scholar 

  9. Neff RA, Mihalevich M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res. 1998;792(2):277–82.

    Article  CAS  PubMed  Google Scholar 

  10. Bouairi E, Neff R, Evans C, Gold A, Andresen MC, Mendelowitz D. Respiratory sinus arrhythmia in freely moving and anesthetized rats. J Appl Physiol. 2004;97(4):1431–6. doi:10.1152/japplphysiol.00277.2004.

    Article  PubMed  Google Scholar 

  11. Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D. Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol. 2010;174(1–2):102–10. doi:10.1016/j.resp.2010.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neff RA, Wang J, Baxi S, Evans C, Mendelowitz D. Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ Res. 2003;93(6):565–72. doi:10.1161/01.RES.0000090361.45027.5B.

    Article  CAS  PubMed  Google Scholar 

  13. Toscani L, Gangemi PF, Parigi A, Silipo R, Ragghianti P, Sirabella E, et al. Human heart rate variability and sleep stages. Ital J Neurol Sci. 1996;17(6):437–9.

    Article  CAS  PubMed  Google Scholar 

  14. Verrier RL, Lau TR, Wallooppillai U, Quattrochi J, Nearing BD, Moreno R, et al. Primary vagally mediated decelerations in heart rate during tonic rapid eye movement sleep in cats. Am J Physiol. 1998;274(4 Pt 2):R1136–41.

    CAS  PubMed  Google Scholar 

  15. Bateman RJ, Boychuk CR, Philbin KE, Mendelowitz D. beta adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Neuroscience. 2012;210:58–66. doi:10.1016/j.neuroscience.2012.02.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boychuk CR, Bateman RJ, Philbin KE, Mendelowitz D. Alpha1-adrenergic receptors facilitate inhibitory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Neuroscience. 2011;193:154–61. doi:10.1016/j.neuroscience.2011.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Philbin KE, Bateman RJ, Mendelowitz D. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res. 2010;1347:65–70. doi:10.1016/j.brainres.2010.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Pinol RA, Byrne P, Mendelowitz D. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem alpha1 and beta1 receptors. J Neurosci. 2014;34(18):6182–9. doi:10.1523/JNEUROSCI.5093-13.2014. Wang and colleagues demonstrated neurons in the locus coeruleus (LC) that are critical in generating alertness and arousal inhibit cardiac vagal neurons via activation of α1 and/or β1 receptors, providing likely mechanisms for the widely prescribed use of adrenergic antagonists for slowing heart rates during heightened vigilant states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coleman CG, Wang G, Park L, Anrather J, Delagrammatikas GJ, Chan J, et al. Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus. J Neurosci. 2010;30(36):12103–12. doi:10.1523/JNEUROSCI.3367-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. da Silva AQ, Fontes MA, Kanagy NL. Chronic infusion of angiotensin receptor antagonists in the hypothalamic paraventricular nucleus prevents hypertension in a rat model of sleep apnea. Brain Res. 2011;1368:231–8. doi:10.1016/j.brainres.2010.10.087.

    Article  PubMed  Google Scholar 

  21. Kc P, Balan KV, Tjoe SS, Martin RJ, Lamanna JC, Haxhiu MA, et al. Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats. J Physiol. 2010;588(Pt 4):725–40. doi:10.1113/jphysiol.2009.184580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kc P, Dick TE. Modulation of cardiorespiratory function mediated by the paraventricular nucleus. Respir Physiol Neurobiol. 2010;174(1–2):55–64. doi:10.1016/j.resp.2010.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT. Chronic intermittent hypoxia increases blood pressure and expression of FosB/DeltaFosB in central autonomic regions. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R131–9. doi:10.1152/ajpregu.00830.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Irnaten M, Venkatesan P, Evans C, Mendelowitz D. Arginine vasopressin enhances GABAergic inhibition of cardiac parasympathetic neurons in the nucleus ambiguus. Neuroscience. 2002;111(3):699–705.

    Article  CAS  PubMed  Google Scholar 

  25. de Oliveira DC, Chagas MH, Garcia LV, Crippa JA, Zuardi AW. Oxytocin interference in the effects induced by inhalation of 7.5% CO(2) in healthy volunteers. Hum Psychopharmacol. 2012;27(4):378–85. doi:10.1002/hup.2237.

    Article  PubMed  Google Scholar 

  26. Grippo AJ, Pournajafi-Nazarloo H, Sanzenbacher L, Trahanas DM, McNeal N, Clarke DA, et al. Peripheral oxytocin administration buffers autonomic but not behavioral responses to environmental stressors in isolated prairie voles. Stress. 2012;15(2):149–61. doi:10.3109/10253890.2011.605486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grippo AJ, Trahanas DM, Zimmerman 2nd RR, Porges SW, Carter CS. Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology. 2009;34(10):1542–53. doi:10.1016/j.psyneuen.2009.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinol RA, Bateman R, Mendelowitz D. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei. J Neurosci Methods. 2012;210(2):238–46. doi:10.1016/j.jneumeth.2012.07.022.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pinol RA, Jameson H, Popratiloff A, Lee NH, Mendelowitz D. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons. PLoS One. 2014;9(11), e112138. doi:10.1371/journal.pone.0112138.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bazzano LA, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension. 2007;50(2):417–23.

    Article  CAS  PubMed  Google Scholar 

  31. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kato M, Adachi T, Koshino Y, Somers VK. Obstructive sleep apnea and cardiovascular disease. Circ J. 2009;73(8):1363–70.

    Article  PubMed  Google Scholar 

  33. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046–53.

    Article  PubMed  Google Scholar 

  34. Gu H, Lin M, Liu J, Gozal D, Scrogin KE, Wurster R, et al. Selective impairment of central mediation of baroreflex in anesthetized young adult Fischer 344 rats after chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 2007;293(5):H2809–18.

    Article  CAS  PubMed  Google Scholar 

  35. Lin M, Liu R, Gozal D, Wead WB, Chapleau MW, Wurster R, et al. Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol. 2007;293(2):H997–1006.

    Article  CAS  PubMed  Google Scholar 

  36. Yan B, Soukhova-O’Hare GK, Li L, Lin Y, Gozal D, Wead WB, et al. Attenuation of heart rate control and neural degeneration in nucleus ambiguus following chronic intermittent hypoxia in young adult Fischer 344 rats. Neuroscience. 2008;153(3):709–20.

    Article  CAS  PubMed  Google Scholar 

  37. Dergacheva O, Dyavanapalli J, Pinol RA, Mendelowitz D. Chronic intermittent hypoxia and hypercapnia inhibit the hypothalamic paraventricular nucleus neurotransmission to parasympathetic cardiac neurons in the brain stem. Hypertension. 2014;64(3):597–603. doi:10.1161/HYPERTENSIONAHA.114.03603. Using an animal model of obstructive sleep apnea, Dergacheva and colleagues have found the oxytocin pathway from the hypothalamic PVN nucleus to cardiac vagal neurons is blunted, and the normal paired-pulse facilitation in this neurotransmission is absent [34]. This has led to the suggestion that chronic activation of oxytocin PVN neurons could be restore parasympathetic cardiac activity in this disease model, and furthermore, based upon these results, at least one clinical study is underway to test if nasal oxytocin administration is beneficial in patients with OSA (ClinicalTrials.gov Identifier: NCT02564068).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292. doi:10.1161/01.cir.0000441139.02102.80.

    Article  PubMed  Google Scholar 

  39. Mahmood SS, Wang TJ. The epidemiology of congestive heart failure: the Framingham Heart Study perspective. Glob Heart. 2013;8(1):77–82. doi:10.1016/j.gheart.2012.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ho KK, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol. 1993;22(4 Suppl A):6A–13.

    Article  CAS  PubMed  Google Scholar 

  41. Desai MY, Watanabe MA, Laddu AA, Hauptman PJ. Pharmacologic modulation of parasympathetic activity in heart failure. Heart Fail Rev. 2011;16(2):179–93. doi:10.1007/s10741-010-9195-1.

    Article  CAS  PubMed  Google Scholar 

  42. Klein HU, Ferrari GM. Vagus nerve stimulation: a new approach to reduce heart failure. Cardiol J. 2010;17(6):638–44.

    PubMed  Google Scholar 

  43. Ishise H, Asanoi H, Ishizaka S, Joho S, Kameyama T, Umeno K, et al. Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. J Appl Physiol. 1998;84(4):1234–41.

    CAS  PubMed  Google Scholar 

  44. Motte S, Mathieu M, Brimioulle S, Pensis A, Ray L, Ketelslegers JM, et al. Respiratory-related heart rate variability in progressive experimental heart failure. Am J Physiol Heart Circ Physiol. 2005;289(4):H1729–35. doi:10.1152/ajpheart.01129.2004.

    Article  CAS  PubMed  Google Scholar 

  45. Grassi G, Seravalle G, Bertinieri G, Turri C, Stella ML, Scopelliti F, et al. Sympathetic and reflex abnormalities in heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy. Clin Sci (Lond). 2001;101(2):141–6.

    Article  CAS  Google Scholar 

  46. Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20(11):808–16. doi:10.1016/j.cardfail.2014.08.009.

    Article  PubMed  Google Scholar 

  47. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J. 2015;36(7):425–33. doi:10.1093/eurheartj/ehu345.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510–6.

    Article  CAS  PubMed  Google Scholar 

  49. Floras JS. Sympathetic activation in human heart failure: diverse mechanisms, therapeutic opportunities. Acta Physiol Scand. 2003;177(3):391–8. doi:10.1046/j.1365-201X.2003.01087.x.

    Article  CAS  PubMed  Google Scholar 

  50. Buckley U, Shivkumar K, Ardell JL. Autonomic regulation therapy in heart failure. Curr Heart Fail Rep. 2015;12(4):284–93. doi:10.1007/s11897-015-0263-7.

    Article  CAS  PubMed  Google Scholar 

  51. Cauley E, Wang X, Dyavanapalli J, Sun K, Garrott K, Kuzmiak-Glancy S, et al. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure. Am J Physiol Heart Circ Physiol. 2015;309(8):H1281–7. doi:10.1152/ajpheart.00445.2015.

    Article  PubMed  Google Scholar 

  52. Brailoiu E, Deliu E, Sporici RA, Brailoiu GC. Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguus. Physiol Rep. 2015;3(6). doi:10.14814/phy2.12419.

  53. Brailoiu GC, Deliu E, Tica AA, Chitravanshi VC, Brailoiu E. Urocortin 3 elevates cytosolic calcium in nucleus ambiguus neurons. J Neurochem. 2012;122(6):1129–36. doi:10.1111/j.1471-4159.2012.07869.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chitravanshi VC, Kawabe K, Sapru HN. Bradycardic effects of microinjections of urocortin 3 into the nucleus ambiguus of the rat. Am J Physiol Regul Integr Comp Physiol. 2012;303(10):R1023–30. doi:10.1152/ajpregu.00224.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, et al. Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology. 2007;148(10):5088–94. doi:10.1210/en.2007-0701.

    Article  CAS  PubMed  Google Scholar 

  56. Brailoiu GC, Benamar K, Arterburn JB, Gao E, Rabinowitz JE, Koch WJ, et al. Aldosterone increases cardiac vagal tone via G protein-coupled oestrogen receptor activation. J Physiol. 2013;591(Pt 17):4223–35. doi:10.1113/jphysiol.2013.257204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wan R, Weigand LA, Bateman R, Griffioen K, Mendelowitz D, Mattson MP. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability. J Neurochem. 2014;129(4):573–80. doi:10.1111/jnc.12656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dyavanapalli J, Byrne P, Mendelowitz D. Activation of D2-like dopamine receptors inhibits GABA and glycinergic neurotransmission to pre-motor cardiac vagal neurons in the nucleus ambiguus. Neuroscience. 2013;247:213–26. doi:10.1016/j.neuroscience.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharp DB, Wang X, Mendelowitz D. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res. 2014;1574:1–5. doi:10.1016/j.brainres.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dergacheva O, Philbin K, Bateman R, Mendelowitz D. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus. Neuroscience. 2011;175:18–23. doi:10.1016/j.neuroscience.2010.11.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dergacheva O, Wang X, Huang ZG, Bouairi E, Stephens C, Gorini C, et al. Hypocretin-1 (orexin-A) facilitates inhibitory and diminishes excitatory synaptic pathways to cardiac vagal neurons in the nucleus ambiguus. J Pharmacol Exp Ther. 2005;314(3):1322–7. doi:10.1124/jpet.105.086421.

    Article  CAS  PubMed  Google Scholar 

  62. Dergacheva O, Bateman R, Byrne P, Mendelowitz D. Orexinergic modulation of GABAergic neurotransmission to cardiac vagal neurons in the brain stem nucleus ambiguus changes during development. Neuroscience. 2012;209:12–20. doi:10.1016/j.neuroscience.2012.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mendelowitz.

Ethics declarations

Conflict of Interest

Drs. Mendelowitz, Dyavanapalli, Dergacheva, and Wang declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyavanapalli, J., Dergacheva, O., Wang, X. et al. Parasympathetic Vagal Control of Cardiac Function. Curr Hypertens Rep 18, 22 (2016). https://doi.org/10.1007/s11906-016-0630-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0630-0

Keywords

Navigation