Skip to main content
Log in

Light and electron-microscopic study of leucine enkephalin immunoreactivity in the cat claustrum

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The claustrum is a complex telencephalic structure owing to its reciprocal connectivity with most—if not all—cortical areas. However, there is a paucity of data in the literature concerning its histochemical components, including opioid peptide neurotransmitters. The aim of the present study was to examine the morphology, distribution and ultrastructure of leucine-enkephalin-immunoreactive (Leu-enk-ir) neurons and fibers in the dorsal claustrum (DC) of the cat. Seven healthy, adult male and female cats were used in our study. All animals received humane care. They were irreversibly anesthetized and transcardially perfused with fixative. Brains were removed, postfixed, blocked and sectioned. Sections were incubated with polyclonal anti-Leu-enk antibodies using the Avidin–Biotin–Peroxidase Complex method. Leu-enk-ir neurons and fibers were distributed throughout the DC. Some of the neurons were lightly-stained, while others were darkly-stained. Light-microscopically, they varied in shape: oval, fusiform, multipolar and irregular. With regard to size, they were categorized as small (15 μm or less in diameter), medium (16–20 μm in diameter) and large (21 μm or more in diameter). No specific pattern of regional distribution was found. On the electron microscope level, immunoproduct was observed in neurons, dendrites and terminal boutons. Different types of Leu-enk-ir neurons differ in their ultrastructural features, including two types of synaptic boutons. No gender-specific features were observed. In conclusion, it is our hope that our study will serve to contribute to a better understanding of the functional neuroanatomy of the DC in the cat, and that it can be extrapolated and applied to other mammals, including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anand DJ, Ranjan M, Oommen A (1995) Immunohistochemical mapping of rat brain delta opioid receptor. Indian J Exp Biol 33:44–47

    PubMed  CAS  Google Scholar 

  • Barg J, Belcheva M, Rowinski J, Ho A, Burke WJ, Chung HD, Schmidt CA, Coscia CJ (1993) Opioid receptor density changes in Alzheimer amygdala and putamen. Brain Res 632:209–215

    Article  PubMed  CAS  Google Scholar 

  • Belluzzi J, Stein L (1977) Enkephalin may mediate euphoria and drive-reduction reward. Nature 266:556–558

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1982) Neuronal types in the claustrum of man. Anat Embryol 163:473–488

    Article  Google Scholar 

  • Bradley P, Briggs I, Gayton R, Lambert L (1976) Effects of microiontophoretically applied methionine-enkephalin on single neurons in rat brainstem. Nature 261:425–426

    Article  PubMed  CAS  Google Scholar 

  • Collier T, Miller J, Quirk G, Travis J, Routtenberg A (1981) Remembering rewards in the environment: endogenous hippocampal opiates modulate reinforcementmemory associations. Sot Neurosci Abstr 7:359

    Google Scholar 

  • Davis G, Buchsbaum M, Bunney W Jr (1980) Alterations of evoked potentials link research in attention dysfunction to peptide response symptoms of schizophrenia. In: Costa E, Trabucci M (eds) Neural peptides and neuronal communication. Raven Press, New York, pp 473–487

    Google Scholar 

  • Druga R (1975). Claustrum (Struktura, Ontogenese a Spoje), Doctoral Dissertation, Charles University, Praha, 193 p

  • Edelstein L, Denaro F (2004) The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Cell Mol Biol 50:675–702

    PubMed  CAS  Google Scholar 

  • Fernandez A, de Ceballos ML, Jenner P, Marsden CD (1994) Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson’s disease patients. Neuroscience 61:73–79

    Article  PubMed  CAS  Google Scholar 

  • Finley J, Maderdrut J, Petrusz P (1981) The immunocytochemical localization of enkephalin in the central nervous system of the rat. J Comp Neurol 198:541–565

    Article  PubMed  CAS  Google Scholar 

  • Florez J, Mediavilla A (1977) Respiratory and cardiovascular effects of met-enkephalin applied to the ventral surface of the brain stem. Brain Res 138:585–590

    Article  PubMed  CAS  Google Scholar 

  • Hinova-Palova D (1986). Light-microscopic and ultrastructural organization of the claustrum in the cat. Afferent and efferent connections. Thesis, Medical Academy, Sofia

  • Hinova-Palova D, Edelestein L, Paloff A, Hristov S, Papantchev V, Ovtscharoff W (2007) Parvalbumin in cat claustrum: ultrastructure, distribution and functional implications. Acta Histochem 109:61–77

    Article  PubMed  CAS  Google Scholar 

  • Hinova-Palova D, Edelstein L, Paloff A, Hristov S, Papantchev V, Ovtscharoff W (2008) Neuronal nitric oxide synthase immunopositive neurons in cat claustrum—a light and electron microscopic study. J Mol Hist 39:447–457

    Article  CAS  Google Scholar 

  • Hughes J, Kosterlitz HW, Smith TW (1977) The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues. Br J Pharmacol 61:639–647

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian H, Lewis M, Hollt V, Watson S (1983) Telencephalic enkephalinergic system in the rat brain. J Neurosci 3:844–855

    PubMed  CAS  Google Scholar 

  • Leyben L, Pinsky C, La Bella F, Havlicek V, Rezek H (1976) Intraventricular met-enkephalin causes unexpected lowering of pain threshold and narcotic withdrawal signs in rats. Nature 264:458–459

    Article  Google Scholar 

  • Lien E, Fenichel R, Garsky V, Sarantakis D, Grant N (1976) Enkephalin-stimulated prolactin release. Life Sci 19:837–840

    Article  PubMed  CAS  Google Scholar 

  • Marshall PE, Landis DM, Zalneraitis EL (1983) Immunocytochemical studies of substance P and leucine-enkephalin in Huntington’s disease. Brain Res 289:11–26

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Chang KJ, Coupex B, Cuatrecasas P (1978) Radioimmunoassay and characterization of enkephalins in rat tissues. J Biol Chem 253:531–538

    PubMed  CAS  Google Scholar 

  • Nicoll R, Siggins G, Ling N, Bloom F, Guillemin R (1977) Neuronal actions of endorphins and enkephalins among brain regions: a comparative microiontophoretic study. Proc Natl Acad Sci USA 74:2584–2588

    Article  PubMed  CAS  Google Scholar 

  • Ochi J, Ito M, Okuno T, Mikawa H (1988) Immunoreactive leucine-enkephalin content in brains of epileptic E1 mice. Epilepsia 29:91–96

    Article  PubMed  CAS  Google Scholar 

  • Paloff AM (1985) Somatodendritic synapses in the central nucleus of colliculus inferior (CI) in the cat. J Hirnforsch 26:353–358

    PubMed  CAS  Google Scholar 

  • Paloff AM, Usunoff KG, Hinova-Palova D et al (1989) The fine structure of the inferior colliculus in the cat. I. Neuronal perikarya in the central nucleus. J Hirnforsch 30:69–90

    PubMed  CAS  Google Scholar 

  • Papantchev V (2008) Cytoarchitectonics, ultrastructure and immunocytochemistry of vestibular complex of the cat. PhD Thesis, Medical University, Sofia

  • Papantchev V, Paloff A, Hinova-Palova D, Hristov S, Todorova D, Ovtshcaroff W (2006) Neuronal nitric oxyde synthase immunopositive neurons in the cat vestibular nuclear complex: a light and electron microscopeic study. J Mol Histol 37:343–352

    Article  PubMed  CAS  Google Scholar 

  • Papantchev V, Todorova-Papantcheva D, Paloff A, Hinova-Palova D, Hristov D, Ovtscharoff W (2009a) On the fine structure of the cat vestibular nuclear complex. Neurons. Compt Rend Acad Bulg Sci 62:641–646

    CAS  Google Scholar 

  • Papantchev V, Todorova-Papantcheva D, Paloff A, Hinova-Palova D, Hristov D, Ovtscharoff W (2009b) On the fine structure of the cat vestibular nuclear complex. Synaptic organization. Compt Rend Acad Bulg Sci 62:761–766

    Google Scholar 

  • Papantchev V, Todorova-Papantcheva D, Paloff A, Hinova-Palova D, Hristov D, Ovtscharoff W (2009c) Immunohistochemical study of parvalumin and leucin enkephalin in vestibular nuclear complex of the cat. Compt Rend Acad Bulg Sci 62:899–904

    CAS  Google Scholar 

  • Pearson RCA, Brodal P, Gatter KC et al (1982) The organization of the connections between the cortex and the claustrum in the monkey. Brain Res 234:435–441

    Article  PubMed  CAS  Google Scholar 

  • Reinozo-Suarez F (1961) Topographischer hirnatlas der katze fur experimental-physiologische untersuchungen. E Merck AG, Darmstadt

  • Shen J, Chan KW, Chen BT, Philippe J, Sehba F, Duttaroy A, Carroll J, Yoburn BC (1997) The effect of in vivo ethanol consumption on cyclic AMP and delta-opioid receptors in mouse striatum. Brain Res 770:65–71

    Article  PubMed  CAS  Google Scholar 

  • Simantov R, Kuhar MJ, Uhl GR, Snyder SH (1977) Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci USA 74:2167–2171

    Article  PubMed  CAS  Google Scholar 

  • Uhl G, Goodman R, Kuhar M, Childers S, Snyder S (1979) Immunocytochemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat. Brain Res 116:75–94

    Article  Google Scholar 

  • Wojcik S, Dziewiatkowski J, Spodnik E et al (2004) Analysis of calcium-binding protein immunoreactivity in the claustrum and the endopiriform nucleus of the rabbit. Acta Neurobiol Exp 64:449–460

    Google Scholar 

  • Yang HY, Hong JS, Costa E (1977) Regional distribution of LEU and MET enkephalin in rat brain. Neuropharmacology 16:303–307

    Article  PubMed  CAS  Google Scholar 

  • Zieglgansberger W, Tulloch I (1979) The effects of methionine- and leucine-enkephalin on spinal neurons of the cat. Brain Res 167:53–64

    Article  PubMed  CAS  Google Scholar 

  • Zieglgansberger W, French E, Siggins G, Bloom FE (1979) Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 205:415–417

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil Papantchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinova-Palova, D., Edelstein, L., Papantchev, V. et al. Light and electron-microscopic study of leucine enkephalin immunoreactivity in the cat claustrum. J Mol Hist 43, 641–649 (2012). https://doi.org/10.1007/s10735-012-9448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9448-5

Keywords

Navigation