Skip to main content
Log in

Transcriptome analysis reveals regulatory effects of exogenous gibberellin on locule number in tomato

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The size and shape of tomato (Solanum lycopersicum L.) fruit are determined by locule number. Gibberellin (GA) can increase locule number in tomato, but the underlying molecular mechanism is unclear. Therefore, in this study, multi-locule ‘MLK1’ tomato seedlings with two to three true leaves (pre-flower bud differentiation) were sprayed with GA1, GA3, GA4, GA7, PAC (paclobutrazol; an inhibitor of GA biosynthesis) and H2O, as a control. We found that GA4 resulted in was the most significant increase in tomato locule number among all bioactive GAs, while PAC decreased the locule number. We analyzed the change in locule number by RNA-seq, quantitative real-time PCR and ultra-performance liquid chromatography–tandem mass spectrometry. The categories ‘Phenylpropanoid biosynthesis’, ‘Plant hormone signal transduction’, and ‘Diterpenoid biosynthesis’ were considerably activated after spraying with GA4. Additionally, indole-3-acetic acid (IAA) content significantly increased and trans-Zeatin-riboside (tZ) content significantly reduced after exogenous GA4 application. We conclude that exogenous GA4 application changed the dynamic balance of hormones in the tomato shoot apex. Furthermore, 53 differentially expressed transcription factors were identified in tomato upon exogenous GA4 treatment during floral bud differentiation, including, YABBYs, TCP, NAC, and ARR (some directly regulate lateral organ development). Our results provide novel insights into how exogenous GA4 affects plant hormone homeostasis in the tomato shoot apex and the underlying mechanism of locule number regulation by GA4 in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  CAS  PubMed  Google Scholar 

  • Buechel S, Leibfried A, To JPC, Zhao Z, Andersen SU, Kieber JJ, Lohmann JU (2010) Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. Eur J Cell Biol 89:279–284. https://doi.org/10.1016/j.ejcb.2009.11.016

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Barrero L, Tanksley SD (2008a) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008b) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  • Eriksson S, Bohlenius H, Moritz T, Nilsson O (2006) GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation. Plant Cell 18:2172–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet CM, Sun T (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Galli M, Gallavotti A (2016) Expanding the regulatory network for meristem size in. Plants Trends Genet 32:372–383

    Article  CAS  PubMed  Google Scholar 

  • Gimenez E et al (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS ONE 5:e14427. https://doi.org/10.1371/journal.pone.0014427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL. Nature 430 1:1031–1034

    Article  CAS  Google Scholar 

  • Gou J, Strauss SH, Tsai C, Fang K, Chen Y, Jiang X, Busov V (2010) Gibberellins regulate lateral root formation in populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Ulmasov T, Hagen G, THE ARF FAMILY OF TRANSCRIPTION FACTORS AND THEIR ROLE IN PLANT HORMONE-RESPONSIVE TRANSCRIPTION (1998) Cell Mol Life Sci 54:619–627

    Article  CAS  PubMed  Google Scholar 

  • Hao Y et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Chandler PM, Poole AJ, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    Article  CAS  PubMed  Google Scholar 

  • Holt AL, Van Haperen JM, Groot EP, Laux T (2014) Signaling in shoot and flower meristems of Arabidopsis thaliana. Curr Opin Plant Biol 17:96–102

    Article  CAS  PubMed  Google Scholar 

  • Ikeda A et al (2001) Slender Rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095. https://doi.org/10.1111/j.1365-313X.2009.04064.x

    Article  CAS  PubMed  Google Scholar 

  • Jain MK, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S et al (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li TL (2012) Regulation effects of exogenous gibberellin acid (GA3) on the formation of tomato (Solanum lycoperscium) ovary locule and fasciated transcription. Afr J Biotechnol. https://doi.org/10.5897/ajb12.2244

    Article  Google Scholar 

  • Lee J, Baum SF, Alvarez JP, Patel A, Chitwood DH, Bowman JL (2005) Activation of CRABS CLAW in the nectaries and carpels of arabidopsis. Plant Cell 17:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y et al (2018) Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biol 18:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Ng CKY, Fan L (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91

    Article  CAS  Google Scholar 

  • Li H et al (2017) Tomato transcription factor SlWUS plays an important role in tomato flower and locule development. Front Plant Sci 8:457

    PubMed  PubMed Central  Google Scholar 

  • Li H et al (2017) Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2-OXIDASE2 expression to control arabidopsis root meristem cell. Number Plant Cell 29:2183–2196. https://doi.org/10.1105/tpc.17.00366

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom Genet 158:413–422

    CAS  Google Scholar 

  • Lozano R, Gimenez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53:1635–1648

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchishinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses ☆. Biochem Biophys Acta 1819:86–96

    CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475. https://doi.org/10.1016/j.cell.2006.05.050

    Article  CAS  PubMed  Google Scholar 

  • Olszewski NE, Sun T, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:561–580

    Article  CAS  Google Scholar 

  • Pan IL, McQuinn R, Giovannoni JJ, Irish VF (2010a) Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61:1795–1806. https://doi.org/10.1093/jxb/erq046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Welti R, Wang X (2010b) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat Protoc 5:986–992

    Article  CAS  PubMed  Google Scholar 

  • Parapunova V et al (2014) Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol 14:157–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prabu G, Prasad DT (2012) Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones. Plant Cell Rep 31:661–669

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T et al (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawhney VK (1983) The role of temperature and its relationship with gibberellic acid in the development of floral organs of tomato (Lycopersicon esculentum). Botany 61:1258–1265

    CAS  Google Scholar 

  • Serranomislata A, Bencivenga S, Bush M, Schiessl K, Boden SA, Sablowski R (2017) DELLA genes restrict inflorescence meristem function independently of plant height. Nat Plants 3:749–754

    Article  CAS  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284:455–475

    Article  CAS  PubMed  Google Scholar 

  • Shimada A et al (2008) Structural basis for gibberellin recognition by its receptor GID. Nature 456 1:520–523

    Article  CAS  Google Scholar 

  • Sun T, Kamiya Y (1997) Regulation and cellular localization of ent-kaurene synthesis. Physiol Plant 101:701–708

    Article  CAS  Google Scholar 

  • Sun T (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar PP, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA 101:7827–7832

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Jia J, Liu XW, Kong X (2012) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214

    Article  PubMed  CAS  Google Scholar 

  • Zhang H et al (2018) Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications. BMC Plant Biol 18:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465:1089–1092

    Article  CAS  PubMed  Google Scholar 

  • Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66:4863–4871

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31972397, U1708232), China Agriculture Research System (Grant No. CARS-25), and the Shenyang Scientific Research Project (18-013-0-36, RC180123).

Author information

Authors and Affiliations

Authors

Contributions

YL designed and carried out the experiments, analyzed the results, and wrote the manuscript. MS, HX, SM and BW provided scientific advice, and revised the manuscript. MQ and TL conceived the research area, provided scientific advice, and supervised the project.

Corresponding authors

Correspondence to Mingfang Qi or Tianlai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The raw data of locule number investigation (XLSX 9.6 kb)

Table S2

The DEGs identified in GA4 vs. CK and PAC vs. CK (XLSX 89.1 kb)

Table S3

Gene Ontology analysis of DEGs in of GA4(100 µM), PAC (100 µM), and H2O treatments DEGs were annotated in three main categories: biological process, cellular component, and molecular function (DOCX 19.2 kb)

Table S4

Expression level and fold change of genes in RNA-seq (XLSX 10.8 kb)

Table S5

The raw data of qRT-PCR validation (XLSX 11.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, M., Xiang, H. et al. Transcriptome analysis reveals regulatory effects of exogenous gibberellin on locule number in tomato. Plant Growth Regul 91, 407–417 (2020). https://doi.org/10.1007/s10725-020-00614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00614-3

Keywords

Navigation