Skip to main content
Log in

Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Anthocyanin biosynthesis in Litchi chinensis is promoted by exogenous abscisic acid (ABA) treatment and inhibited by exogenous N-(2-chloro-pyridin-4-yl)-N′-phenylurea (CPPU) application. However, the mechanisms by which ABA or CPPU regulates anthocyanin biosynthesis are still unclear. To understand the global molecular events of these physiological changes, transcriptome profiling was analyzed in L. chinensis cv. Feizixiao pericarps after 0, 10, and 20 days of exogenous ABA (25 mg/L ABA) and CPPU (4 mg/L) treatment using RNA-seq. Compared with the control, a total of 579 and 827 genes were differently expressed [|log2 fold change| ≥ 1 and P value ≤ 0.005] in ABA- and CPPU-treated pericarp, respectively. Exogenous ABA up-regulated the expressions of genes involved in flavonoid and anthocyanin biosynthesis, including PAL, C4H, CHS, CHI, DFR, LDOX, and GTs. In contrast, exogenous CPPU induced genes related to carbon metabolism, amino acids biosynthesis, and photosynthesis, and down-regulated genes related to anthocyanin biosynthesis. Comparison of transcriptomes in responses to individual treatments with ABA or CPPU revealed that there were cooperative and antagonistic interplay between ABA and cytokinins in litchi fruit ripening. ABA treatment had no significant effect on the genes related to chlorophyll catabolism. On the other hand, CPPU treatment significantly increased the expression of chlorophyll synthesis genes and inhibited the expression of chlorophyll degradation gene (SGR). In addition, ABA and CPPU treatment also affected gene expression in other plant hormone signaling pathways, such as auxin, GA, and ethylene, forming a complex network to regulate anthocyanin biosynthesis. This study provides a valuable overview of global molecular events for studying the mechanisms by which ABA and cytokinins influence anthocyanin biosynthesis in litchi and other fruit trees enriched with anthocyanins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

BA:

6-benzylaminopurine

bHLH:

Basic helix-loop-helix

CTK:

Cytokinin

CPPU:

N-(2-chloro-pyridin-4-yl)-N′-phenylurea

DEGs:

Differentially expressed genes

DFR:

Dihydroflavonol-4-reductase

GAs:

Gibberellins

IAA:

Indole-3-acetic acid

MeJA:

Methyl jasmonate

NAA:

Naphthalene acetic acid

NDGA:

Nordihydroguaiaretic acid

PGRs:

Plant growth regulators

TF:

Transcription factor

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottcher C, Harvey K, Forde CG, Boss PK, Davies C (2011) Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust J Grape Wine Res 17:1–8

    Article  CAS  Google Scholar 

  • Chen J, Mao L, Lu W, Ying T, Luo Z (2016) Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243:183–197

    Article  CAS  PubMed  Google Scholar 

  • Cowan AK, Cairns ALP, Bartels-Rahm B (1999) Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid–cytokinin antagonism. J Exp Bot 50:595–603

    Article  CAS  Google Scholar 

  • Das PK, Shin DH, Choi SB, Park YI (2012) Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells 34:501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deikman J, Hammer PE (1995) Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol 108:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  • Guo JC, Hu XW, Duan RJ (2005) Interactive effects of CKs, light and sucrose on the phenotypes and the syntheses of anthocyanins, lignins in cytokinin over-producing transgenic Arabidopsis. J Plant Growth Regul 24:93–101

    Article  CAS  Google Scholar 

  • Hu B, Zhao J, Lai B, Qin Y, Wang H, Hu G (2016) LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep 35:831–843

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zeng L, Huang HB (2005) Lychee and longan production in China. Acta Hortic 665:27–36

    Article  Google Scholar 

  • Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G, Park YI (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154:1515–1531

    Article  Google Scholar 

  • Ji XH, Wang YT, Zhang R, Wu SJ, An MM, Li M, Wang CZ, Chen XL, Zhang YM, Chen XS (2015) Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tissue Organ Cult 120:325–337

    Article  CAS  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YM, Joyce DC (2003) ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul 39:171–174

    Article  Google Scholar 

  • Jiang JP, Su MX, Lee PM (1986) The production and physiological effects of ethylene during ontogeny and after harvest of litchi fruits. Acta Phytophysiol Sin 12:95–103

    CAS  Google Scholar 

  • Kim JS, Lee BH, Kim SH, Oh KH, Yun Cho K (2006) Response to environmental and chemical signals for anthocyanin biosynthesis in nonchlorophyllous corn (Zea mays L.) leaf. J Plant Biol 49:16–25

    Article  CAS  Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575

    Article  CAS  PubMed  Google Scholar 

  • Lai B, Li XJ, Hu B, Qin YH, Huang XM, Wang HC, Hu GB (2014) LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS ONE 9(1):e86293

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai B, Hu B, Qin YH, Zhao JT, Wang HC, Hu GB (2015) Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics 16:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Wicker L (1991) Anthocyanin pigments in the skin of lychee fruit. J Food Sci 56:466–468

    Article  CAS  Google Scholar 

  • Leng P, Yuan B, Guo Y (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65(16):4577–4588

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Lai B, Zhao JT, Qin YH, He JM, Huang XM, Wang HC, Hu GB (2016a) Sequence differences in LcFGRT4 alleles are responsible for the diverse anthocyanin composition in the pericarp of Litchi chinensis. Mol Breed 36:93

    Article  CAS  Google Scholar 

  • Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Petersen M, Mundy J, Qiu JL (2016b) MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28(11):2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A (2017) Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol 58:1431–1441

    Article  PubMed  Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R (2014) MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J Exp Bot 65:401–417

    Article  CAS  PubMed  Google Scholar 

  • Minana FMH, Primomillo E, Primomillo J (1989) Isolation and identification of cytokinins from developing citrus-fruits. Citriculture 1–4:367–379

    Google Scholar 

  • Rodyoung A, Masuda Y, Tomiyama H, Saito T, Okawa K, Ohara H, Kondo S (2016) Effects of light emitting diode irradiation at night on abscisic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. Plant Growth Regul 79:39–46

    Article  CAS  Google Scholar 

  • Shen XJ, Zhao K, Liu LL, Zhang KC, Huazhao Yuan HZ, Liao X, Wang Q, Xinwei Guo XW, Li F, Li TH (2014) A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol 55(5):862–880

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Saini MK, Singh J, Pongener A, Sidhu GS (2014) Preharvest application of abscisic acid promotes anthocyanins accumulation in pericarp of litchi fruit without adversely affecting postharvest quality. Postharvest Biol Technol 96:14–22

    Article  CAS  Google Scholar 

  • Sun T, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55(1):197–223

    Article  CAS  PubMed  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiruvengadam M, Baskar V, Kim SH, Chung IM (2016) Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa). Plant Growth Regul 80:377–390

    Article  CAS  Google Scholar 

  • Wang H, Huang H, Huang X (2007) Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn. Plant Growth Regul 52:189–198

    Article  CAS  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS ONE 6:e19455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195e204

    Article  Google Scholar 

  • Wrolstad RE, Culbertson JD, Cornwell CJ, Mattick LR (1982) Detection of adulteration in blackberry juice concentrates and wines. J Assoc Off Anal Chem 65:1417–1423

    CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang HN, Li WC, Wang HC, Shi SY, Shu B, Liu LQ, Wei YZ, Xie JH (2016) Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Front Plant Sci 7:963

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The paper was supported by the Pearl River S&T Nova Program of Guangzhou (No. 201610010147), China Litchi and Longan Industry Technology Research System (Project No. CARS-32-05), and YangFan Innovative & Entrepreneurial Research Team Project (No. 2014YT02H013).

Availability of supporting data

All of the raw reads are available in the NCBI Sequence Read Archive database (Accession Number PRJNA415698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jietang Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Li, J., Wang, D. et al. Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid. Plant Growth Regul 84, 437–450 (2018). https://doi.org/10.1007/s10725-017-0351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0351-7

Keywords

Navigation