Skip to main content
Log in

PnF3H, a flavanone 3-hydroxylase from the Antarctic moss Pohlia nutans, confers tolerance to salt stress and ABA treatment in transgenic Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Flavonoids are widely distributed secondary metabolites in plants. However, far less research has been carried out on genes involved in the flavonoid biosynthetic pathways in bryophytes. Here, a novel flavanone 3-hydroxylase gene (PnF3H) was cloned from Antarctic moss Pohlia nutans. Subcellular localization revealed that PnF3H were mainly distributed to cytosol. The expression of PnF3H was rapidly induced by salt, UV-B, cold and drought stresses as well as by exogenously applied abscisic acid (ABA). Transgenic Arabidopsis plants of overexpressing PnF3H exhibited enhanced tolerance to salt and oxidative stresses. The expression levels of several stress resistance genes (i.e., AtSOS3, AtP5CS1, AtHKT1, AtCAT1 and AtAPX1) were markedly up-regulated in transgenic plants. The activities of antioxidant enzymes were increased, while the content of hydrogen peroxide was obviously decreased in PnF3H transgenic plants. Meanwhile, the expression levels of ABA-responsive genes which confer for controlling seeds germination, such as AtABI4, AtABI5, AtABI3 and AtABF3 were markedly decreased. Additionally, overexpressing PnF3H alleviated the inhibitory effects of naringenin on plant growth and changed the flavonoid components in transgenic plants. Therefore, we proposed that PnF3H was a flavanone 3-hydroxylase involving in regulating the salinity tolerance and ABA sensitivity to enable P. nutans to adapt to polar climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168(3):204–212

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AM, Rashotte AS, Murphy, JN, Brian WT, Peer WA, Lincoln Taiz GKM (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chater C, Gray JE, Beerling DJ (2013) Early evolutionary acquisition of stomatal control and development gene signalling networks. Curr Opin Plant Biol 16(5):638–646

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J (2013) A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6(6):1769–1780

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81(1):253–264

    Article  CAS  Google Scholar 

  • Clarke LJ, Robinson SA (2008) Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytol 179(3):776–783

    Article  PubMed  Google Scholar 

  • Czemmel S, Heppel SC, Bogs J (2012) R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma 249(2):109–118

    Article  CAS  Google Scholar 

  • Du Y, Chu H, Wang M, Chu IK, Lo C (2010) Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. J Exp Bot 61(4):983–994

    Article  CAS  PubMed  Google Scholar 

  • Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Sun X, Wang J, Yan C (2012) Simple rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by using single SPE purification and isotope dilution. Anal Chem 28:1081–1087

    CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Mol Genet Genom 5:151–161

    Google Scholar 

  • Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Bespalhok Filho JC, Vieira LGE (2014) Stress-induced ∆1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant 36(9):2309–2319

    Article  CAS  Google Scholar 

  • Hamada AbdElgawad GZ, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:1–11

    Google Scholar 

  • Hediye Sekmen A, Türkan İ, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131(3):399–411

    Article  Google Scholar 

  • Keskin BC, Sarikaya AT, Yüksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust J Crop Sci 4(8):617–625

    CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lv X, Wang L, Qiu Z, Song X, Lin J, Chen W (2017) Transcriptome analysis reveals the accumulation mechanism of anthocyanins in ‘Zijuan’ tea (Camellia sinensis var. asssamica (Masters) kitamura) leaves. Plant Growth Regul 81(1):51–61

    Article  CAS  Google Scholar 

  • Liu M, Li X, Liu Y, Cao B (2013a) Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol Biochem 73:161–167

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang N, Zhang P, Cong B, Lin X, Wang S, Xia G, Huang X (2013b) Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss. Extremophiles 17(3):391–403

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang J, Chen K, Zhang Z, Zhang P (2017) The L-type lectin receptor-like kinase (PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis. Plant Growth Regul 81:409–418

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Shen Y, Jin S, Huang S, Cheng X, Wang Z, Li P, Zhao J, Bao M, Ning G (2016) Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Sci 245:35–49

    Article  CAS  PubMed  Google Scholar 

  • Mahajan M, Yadav SK (2014) Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco. Plant Mol Biol 85(6):551–573

    Article  CAS  PubMed  Google Scholar 

  • Meng C, Zhang S, Deng YS, Wang GD, Kong FY (2015) Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Plant Physiol Biochem 96:388–400

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Perez-Cano FJ, Castell M (2016) Flavonoids, inflammation and immune system. Nutrients 8(10):659

    Article  PubMed Central  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34

    Article  CAS  PubMed  Google Scholar 

  • Sankari SL, Babu NA, Rani V, Priyadharsini C, Masthan KMK (2014) Flavonoids-clinical effects and applications in dentistry: a review. J Pharm Bioallied Sci 6(Suppl 1):S26–S29

    Article  PubMed  PubMed Central  Google Scholar 

  • Schofield CJ, Zhang Z (1999) Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9(6):722–731

    Article  CAS  PubMed  Google Scholar 

  • Schroeter B, Green TGA, Kulle D, Pannewitz S, Schlensog M, Sancho LG (2012) The moss Bryum argenteum var. muticum Brid. is well adapted to cope with high light in continental Antarctica. Antarct Sci 24(03):281–291

    Article  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8(5):659–671

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Dubey AK, Singh RP (2010) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environm Sci Biol 10(1):63–77

    Article  Google Scholar 

  • Skotnicki ML, Ninham JA, Selkirk PM (2004) Genetic diversity, mutagenesis and dispersal of Antarctic mosses—a review of progress with molecular studies. Antarct Sci 12(03):363–373

    Google Scholar 

  • Tu Y, Liu F, Guo D, Fan L, Zhu Z, Xue Y, Gao Y, Guo M (2016) Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC Plant Biol 16(1):132–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):86–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang P, Liu S, Cong B, Chen K (2016) A leucine-rich repeat receptor-like kinase from the Antarctic moss Pohlia nutans confers salinity and ABA stress tolerance. Plant Mol Biol Rep 34(6):1136–1145

    Article  CAS  Google Scholar 

  • Xiong S, Tian N, Long J, Chen Y, Qin Y, Feng J, Xiao W, Liu S (2016) Molecular cloning and characterization of a flavanone 3-hydroxylase gene from Artemisia annua L. Plant Physiol Biochem 105:29–36

    Article  CAS  PubMed  Google Scholar 

  • Yotsui I, Saruhashi M, Kawato T, Taji T, Hayashi T, Quatrano RS, Sakata Y (2013) ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens. New Phytol 199(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Yu HQ, Han N, Zhang YY, Tao Y, Chen L, Liu YP, Zhou SF, Fu FL, Li WC (2017) Cloning and characterization of vacuolar H+-pyrophosphatase gene (AnVP1) from Ammopiptanthus nanus and its heterologous expression enhances osmotic tolerance in yeast and Arabidopsis thaliana. Plant Growth Regul 81(3):385–397

    Article  CAS  Google Scholar 

  • Yun CS, Yamamoto T, Nozawa A, Tozawa Y (2008) Expression of parsley flavone synthase I establishes the flavone biosynthetic pathway in Arabidopsis thaliana. Biosci Biotechnol Biochem 72(4):968–973

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zhang Z, Wang J, Cong B, Chen K, Liu S (2014) A novel receptor-like kinase (PnRLK-1) from the Antarctic moss Pohlia nutans enhances salt and oxidative stress tolerance. Plant Mol Biol Rep 33(4):1156–1170

    Article  CAS  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15(2):72–80

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41206176 and 41476174), Natural Science Foundation of Shandong Province (ZR2014DQ012), Basic Scientific Fund for National Public Research Institutes of China (2014T04), and Excellent Creative Team Fund of Jinan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengying Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liu, S., Yao, X. et al. PnF3H, a flavanone 3-hydroxylase from the Antarctic moss Pohlia nutans, confers tolerance to salt stress and ABA treatment in transgenic Arabidopsis . Plant Growth Regul 83, 489–500 (2017). https://doi.org/10.1007/s10725-017-0314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0314-z

Keywords

Navigation