Skip to main content
Log in

Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The terrestrial ecosystem of Antarctica are among the most extreme on earth, challenging the communities and making their existence difficult by rapidly increasing annual summer influx of solar ultraviolet radiations (UV-R), extremely cold conditions and lesser availability of nutrients. Spring time ozone depletion is due to release of chlorofluorocarbons in the earth atmosphere and is a serious cause of concern among environmentalists. Antarctic continent is mostly dominated by cryptogamic plants with limited distribution in different parts of the icy continent however; their distribution is mostly confined to Sub-Antarctic region. By the virtue of light requirement, cryptogams are exposed to extreme seasonal fluctuation in photosynthetically active radiation (PAR), and ultraviolet (UV) radiation which are closely associated with photosynthetic pigments in photoautotrophic organisms. Antarctic cryptogams cope up the stress imposed by UV radiation by the development of efficient systems for repairing damage by synthesis of screening compounds such as UV-B absorbing pigments and anthocyanin compounds. A major part of the UV absorbing compounds are appeared to be constitutive in lichens which are usnic acid, perlatolic acid and fumarphotocetraric acid which is particularly induced by UV-B. Secondary metabolites such as phenolics, atranorin, parietin and melanin also enhance the plant defense, by different molecular targets in specific solar irradiance and potential for increased antioxidative protection to UV induced vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almong O, Lalan O, Shoham G, Nechushtai R (1991) The composition and organization of photosynthesis. Int J Basic Clin Physiol Pharmacol 2:123–140

    Google Scholar 

  • Azmi OR, Seppelt RD (1998) The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Bachereau F, Asta J (1997) Effects of solar UVR at high altitude on the physiology and the biochemistry of terrestrial lichen Cetraria islandica (L.). Ach Symbiosis 23:197–217

    CAS  Google Scholar 

  • Beggs CJ, Wellmann E (1994) Photocontrol of flavonoid biosynthesis. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer Academic publishers, Dordrecht

    Google Scholar 

  • Blumthaler M, Ambach W (1990) Indication of increasing solar UV-B radiation flux in alpine regions. Science 248:206–208

    Article  CAS  Google Scholar 

  • Bothwell ML, Sherbot DMT, Pollock CM (1994) Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265:97–100

    Article  CAS  Google Scholar 

  • Buffoni-Hall RS, Boarnman JF, Bjorn LO (2002) UV induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. Photochem Photobiol 66:13–20

    Article  CAS  Google Scholar 

  • Caldwell MM, Robberecht R, Flint SD (1983) Internal filters: prospects for UV-acclimation in higher plants. Physiol Plant 58:445–450

    Article  CAS  Google Scholar 

  • Caldwell MM, Bjorn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1998) Effect of increased solar UV-R on terrestrial ecosystems. J Photochem Photobiol B Biol 46:40–52

    Article  CAS  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  CAS  Google Scholar 

  • Crittenden PD (1998) Nutrient exchange in an Antarctic macro-lichens during summer snowfall-snowmelt events. New Phytol 139:697–707

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM (1986) Stabilization of membranes in anhydrobiotic organisms. In: Leopold C (ed) Membranes, metabolism and dry organisms. Cornell University Press, Ithaca, pp 188–230

    Google Scholar 

  • Cvetic T, Sabovljevic A, Pristov JB, Sabovljevic M (2009) Effects of day length on photosynthetic pigments and antioxidative metabolism of in vitro cultured moss Atrichum undulatum. Bot Serbica 33:83–88

    Google Scholar 

  • Czeczuga B, Inoue I, Upreti DK (1996) Carotenoids in lichens from the Antarctic. Rep Nankyoku Shiryo 40:247–254

    Google Scholar 

  • Day TA (1993) Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants. Oecologia 95:542–550

    Google Scholar 

  • Day TA, Ruhland CT, Xiong FS (2001) Influence of solar UV-B radiation on Antarctic terrestrial plants: results from a 4-year field study. J Photochem Photobiol B Biol 62:78–87

    Article  CAS  Google Scholar 

  • Demming-Adams B, Adams WW (1992) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15:411–419

    Article  Google Scholar 

  • Demming-Adams B, Gilmore AM et al (1996) In vivo functions of carotenoids in higher plants. FASEB J 10:403–412

    Google Scholar 

  • Dhargalkar VK (2004) Effect of different temperature regimes on the chlorophyll a concentration in four species of Antarctic macroalgae. Seaweed Res Utiln 26:237–243

    Google Scholar 

  • Dodge CW (1973) Lichen flora of Antarctica Continent and adjacent Island. Phonix Publishing, Canaan, pp 2–45

    Google Scholar 

  • Dunn JL (2000) Seasonal variation in pigment content of three species of Antarctic bryophytes. BSc. Honours. University of Wollongong, Wollongong

    Google Scholar 

  • Dunn JL, Robinson SA (2006) Ultraviolet B screening potential is higher in two cosmopolitan moss species than in co occurring Antarctic endemic moss: implication of continuing ozone depletion. Glob Change Biol 12:2282–2296

    Article  Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, UK, pp 154–180

    Google Scholar 

  • Frederick JH, Qu Z, Booth CR (1998) Ultraviolet radiation at sites on the Antarctic coast. Photochem Photobiol 68:183–190

    Article  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  Google Scholar 

  • Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiations drive acclimation of sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl Ecol 6:75–82

    Article  CAS  Google Scholar 

  • Gauslaa Y, Ustvedt EM (2003) In parietin a UV-B or a blue light screening pigment in lichens Xanthoria parietina. Photochem Photobiol Sci 2:424–432

    Article  CAS  Google Scholar 

  • Gehrke C (1999) Impacts of enhanced ultraviolet-B radiation on mosses in a sub arctic heath ecosystem. Ecology 80:1844–1851

    Article  Google Scholar 

  • Green TGA, Schroeter BLG (1999) Plant life in Antarctica. In: Valladares F (ed) Handbook of functional plant ecology. Marcel Dekker, New York, pp 496–543

    Google Scholar 

  • Greenberg BM, Gaba V, Canaani O, Malkin S, Mattoo AK, Edelman M (1989) Separate photo sensitizers mediate degradation of the photosystem II reaction center protein in the visible and UV spectral regions. Proc Natl Acad Sci USA 86:6617–6620

    Article  CAS  Google Scholar 

  • Hader DP, Kumar HD, Smith RC, Worrest RC (2003) Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 2:39–50

    Article  Google Scholar 

  • He YY, Hader DP (2002) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736

    Article  CAS  Google Scholar 

  • Hertel H (1988) Problem in monographing Antarctic crustose lichens. Polarforschung 58:65–76

    Google Scholar 

  • Hovenden MJ, Jackson AE, Seppelt RD (1994) Field photosynthetic activity of lichens in the Windmill Island Oasis, Wilkes Land, continental Antarctica. Physiol Plant 90:567–576

    Article  CAS  Google Scholar 

  • Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491

    Article  CAS  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    Article  CAS  Google Scholar 

  • Hunt JE, Mc Neil DL (1999) The influences of present day level of ultraviolet-B radiation on seedlings of two Southern Hemisphere temperate tree species. Plant Ecol 143:39–50

    Article  Google Scholar 

  • Husain SR, Cillard J, Cillard P (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26:2489–2491

    Article  CAS  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Keller A, Hargraves P, Jeon H, Klein-Macphee G, Klos S, Oviatt C, Zhceng J (1997) Ultraviolet-B radiation enhancement does not affect marine trophic levels during a winter spring bloom. Ecoscience 4:129–139

    Google Scholar 

  • Krizek DT, Mirceki RM (2004) Evidence for phytotoxic effects of cellulose acetate in UV exclusion studies. Environ Exp Bot 51:33–43

    Article  CAS  Google Scholar 

  • Lal M, Holt T (1991) Ozone depletion due to increasing anthropogenic trace gas emissions: role of stratospheric chemistry and implications for future climate. Clim Res 1:85–95

    Article  Google Scholar 

  • Lamb IM (1964) Antarctic lichens I. The genera Usnea, Ramelina, Himantormia, Alectoria, Cornicularia. British Antarct Surv Sci Rep 38:1–34

    Google Scholar 

  • Looy CV, Collinson ME, van Konijnenburg-van Cittert JHA, Visscher H, Brain APR (2005) The ultrastructure and botanical affinity of end-Permian spore tetrads. Int J Plant Sci 166:875–887

    Article  Google Scholar 

  • Lovelock CE, Jackson AE, Melick DR et al (1995) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109:955–961

    CAS  Google Scholar 

  • Lubin D, Jensen EH (1995) Effect of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 377:710–713

    Article  CAS  Google Scholar 

  • Lud D, Huiskes AH, Maerdijk TCW, Rozema J (2001) The effects of altered levels of UV-B radiation on an Antarctic grass and lichen. Plant Ecol 154:89–99

    Article  Google Scholar 

  • Madronich S, McKenzie RL, Caldwell MM et al (1995) Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24:143–152

    Google Scholar 

  • Marchand PJ (1984) Light extinction under a changing snow cover. In: Merritt JF (ed) Winter ecology of small mammals. Carnegie Museum of Natural History, Pittsburg, pp 33–37

    Google Scholar 

  • Markham KR, Franke A, Given DR et al (1990) Historical Antarctic ozone level trends from herbarium specimen flavonoids. Bull de Liaison Groupe du Polyphenols 15:230–235

    CAS  Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria Pulmonaria. New Phytol 175:271–282

    Article  CAS  Google Scholar 

  • Meijkamp BB, Aerts R, van de Staaij J et al (1999) Effects of UV-B on secondary metabolites in plants. In: Rozema J (ed) Stratospheric ozone depletion: the effects of enhanced UV-B radiation. Backhuys Publishers, Leiden, pp 71–99

    Google Scholar 

  • Newsham KK (2003) UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the moss Andreaea regularis. Oecologia 135:327–331

    CAS  Google Scholar 

  • Newsham KK, Robinson SA (2009) Responses of plants in polar regions to UVB exposure: a meta-analysis. Glob Change Biol 15:2574–2589

    Article  Google Scholar 

  • Newsham KK, Hodgson DA, Murray A et al (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Glob Change Biol 8:972–983

    Article  Google Scholar 

  • Newsham KK, Geissler PA, Nicolson MJ et al (2005) Sequential reduction of UV-B radiation in the field alters the pigmentation of an Antarctic leafy liverwort. Environ Exp Bot 54:22–32

    Article  CAS  Google Scholar 

  • Nybakken L, Bilger W, Johanson U, Bjorn LO, Zielke M, Solheim B (2004a) Epidermal UV-screening in vascular plants from Svalbard (Norwegian Arctic). Polar Biol 27:383–390

    Article  Google Scholar 

  • Nybakken L, Auberts S, Bilger W (2004b) Epidermal UV-screening of Arctic and alpine plants along a latitudinal gradient in Europe. Polar Biol 27:391–398

    Article  Google Scholar 

  • Ochs CA (1997) Effect of UV radiation on grazing by two marine heterotrophic nanoflagellates on autotrophic picoplankton. J Plankton Res 19:1517–1536

    Article  Google Scholar 

  • Olivera EN, Otero S, Tomas R, Fabon G, Abaigar JM (2010) Cyclic environmental factors only partially explain the seasonal variability of photoprotection and physiology in two mosses from an unforested headwater stream. Bryologist 113:277–291

    Article  Google Scholar 

  • Paul N (2001) Plant response to UV-B; time to look beyond stratospheric ozone depletion. New Phytol 150:1–8

    Article  Google Scholar 

  • Phoenix GK, Gwynn-Jones D, Lee JA, Callaghan TV (2002) Ecological importance of ambient solar ultraviolet radiation to a sub arctic health community. Plant Ecol 165:263–273

    Article  Google Scholar 

  • Popp M, Smirnoff N (1995) Polyol accumulation and metabolism during water deficit. In: Smirnoff N (ed) Environment and plant metabolism-flexibility and acclimation. Bios Scientific Publishers, Oxford, pp 199–215

    Google Scholar 

  • Post A, Larkum AWD (1993) UV-absorbing pigments, photosynthesis and UV exposure in Antarctica: comparison of terrestrial and marine algae. Aquat Bot 45:231–243

    Article  Google Scholar 

  • Quesada A, Goff L, Karentz D (1998) Effects of natural UV radiation on Antarctic cyanobacterial mats. Polar Biol 11:98–111

    Google Scholar 

  • Ramanathan V (1976) Radiative transfer within the earth’s troposphere and stratosphere: a simplified radative-conconvective model. J Atmos Sci 33:1330–1346

    Article  CAS  Google Scholar 

  • Riley PA (1997) Melanin: molecules in focus. Int J Biochem Cell Biol 29:1235–1239

    Article  CAS  Google Scholar 

  • Robinson SA, Lovelock CE (2002) Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant Cell Environ 25:1239–1250

    Article  Google Scholar 

  • Robinson SA, Wasley J, Popp M, Lovelock CE (2000) Desiccation tolerance of three moss species from continental Antarctica. Aus J Plant Physiol 27:379–388

    CAS  Google Scholar 

  • Robinson SA, Wasley J, Turnbull JD, Lovelock CE (2001) Antarctic moss coping with ozone hole. In: Proceeding of the 12th international congress on photosynthesis. CSIRO publishing, Canberra

  • Robinson SA, Wasley J, Tobin AK (2003) Living on the edge- plants and global change in continental and maritime Antarctica. Glob Change Bio 9:1681–1717

    Article  Google Scholar 

  • Robinson SA, Turnbull JD, Lovelock CE (2005) Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Glob Change Biol 11:476–489

    Article  Google Scholar 

  • Robinson SA, Lovelock CE, Wasley J (2006) Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Glob Change Biol 12:1800–1812

    Article  Google Scholar 

  • Robson TM, Panocotto VA, Flint SD, Ballare CL, Sala OE, Scopel AL, Cadwell MM (2003) Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytol 160:379–389

    Article  Google Scholar 

  • Rozema J, Bjorn LO, Bornman JF et al (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems–an experimental and functional analysis of the evolution of UV absorbing compounds. Photochem Photobiol B Biol 66:2–12

    Article  CAS  Google Scholar 

  • Rozema J, Blokker P, Fuertes MMA, Broekman R (2009) UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation. Photochem Photobiol Sci 8:1233–1243

    Article  CAS  Google Scholar 

  • Ruhland CT, Day TA (2000) Effect of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant 109:244–251

    Article  CAS  Google Scholar 

  • Ruhland CT, Day TA (2001) Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environ Exp Bot 45:143–154

    Article  CAS  Google Scholar 

  • Ruhland CT, Xiong FS, Clark WD, Day TA (2005) The influence of ultraviolet-B radiation on growth hydroxycinnamic acids and flavonoids of D. antarctica during spring time ozone depletion in Antarctica. Photochem Photobiol 81:1086–1093

    Article  CAS  Google Scholar 

  • Searles PS, Flint SD, Diaz SB et al (1999) Solar ultraviolet-B radiation influence on Sphagnum bog and Carex fen ecosystems: first field season findings in Tierra del Fuego, Argentina. Glob Change Biol 5:225–234

    Article  Google Scholar 

  • Searles PS, Flint SD, Diaz SB et al (2002) Plant response to solar ultraviolet-B radiation in a Southern South American Sphagnum peatland. J Ecol 90:704–713

    Article  Google Scholar 

  • Selkirk PM, Seppelt RD (1987) Species distribution within a moss bed in Greater Antarctica. Symposia Biologia Hungarica 35:279–284

    Google Scholar 

  • Sinha RP, Klisch M, Groniger A, Hader DP (2001) Response of aquatic algae and cyanobacteria to solar UV-B. Plant Ecol 154:221–236

    Article  Google Scholar 

  • Sinha RP, Kumar A, Tyagi MB, Hader DP (2005) Ultraviolet-B induced destruction of phycobiliproteins in cynobacteria. Physiol Mol Biol Plant 11:313–319

    CAS  Google Scholar 

  • Sliwa L, Olech M (2002) Notes on species of Lecanora (lichenized Ascomycotina) from the Antarctic. Pol Polar Res 23:117–133

    Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activities of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Smith RIL (2005) The thermophilic bryoflora of Deception Island: unique plant communities as a criterion for designating an Antarctic specially protected area. Antarct Sci 17:17–27

    Article  Google Scholar 

  • Smith RC et al (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic water. Science 255:952–959

    Article  CAS  Google Scholar 

  • Snell KRS, Convey P, Newsham KK (2007) Metabolic recovery of the Antarctic liverwort Cephaloziella varians during spring snowmelt. Polar Biol 30:1115–1122

    Article  Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2002) UV-induction of sunscreening pigments in lichens. New Phytol 158:91–100

    Article  Google Scholar 

  • Sonesson M, Callaghan TV, Carlsson BA (1996) Effects of enhanced ultraviolet radiation and carbon dioxide concentration on the moss Hylocomium splendens. Glob Change Biol 2:67–73

    Article  Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effect of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473

    Article  CAS  Google Scholar 

  • Tevini M, Iwanzik W, Thoma U (1981) Some effect of enhanced UV-B irradiation on the growth and composition of plants. Planta 153:388–394

    Article  CAS  Google Scholar 

  • Tosi S, Casado B, Caretta RGG (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Upreti DK, Mukerji KG, Chamola BP, Upadhya RK (1999) Studies on Antarctic lichens: biology of lichens (eds) Aravali Book International, New Delhi, pp 333–342

  • Vincent WF, Roy S (1993) Solar Ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12

    CAS  Google Scholar 

  • Visscher H, Looy CV, Collinson ME, Brinkhuis H, van Konijnenburg-van Cittert JHA, Kirschner WM, Sephton MA (2004) Environmental mutagenesis during the end-Permian ecological crisis. Proc Natl Acad Sci USA 101:12952–12956

    Article  CAS  Google Scholar 

  • Wafar S, Untawale AG (1983) Flora of dakshin gangotri in Antarctic scientific report of Ist Indian expedition to Antarctica. Tech Pub 1:182–185

    Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  Google Scholar 

  • Wu H, Gao K, Villafane VE, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. App Environ Microbiol 71:5004–5013

    Article  CAS  Google Scholar 

  • Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol 125:738–751

    Article  CAS  Google Scholar 

  • Zidarova R, Pouneva I (2006) Physiological and biochemical characterization of Antarctic Isolate Choricystis minor during oxidative stress at different temperatures and light intensities. Gen Appl Plant Physiol Special Issue, pp 109–115

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Centre for Antarctic and Ocean Research (NCAOR, Goa), Ministry of Earth Sciences, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaswant Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Dubey, A.K. & Singh, R.P. Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10, 63–77 (2011). https://doi.org/10.1007/s11157-010-9226-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-010-9226-3

Keywords

Navigation