Skip to main content
Log in

Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The growth and morphophysiological responses of wild watermelon (C. lanatus var. citroide) M20 and Chinese domesticated watermelon (C. lanatus var. lanatus) Y34 to drought stress and subsequent re-watering were compared. Wild watermelon is drought-tolerant, whereas the domesticated watermelon is susceptible. Irrigation was withheld from seedlings for 10 days and the seedlings were then allowed to recover for 1 day. Drought treatment resulted in the wilting and yellowing of leaves in both genotypes, but symptoms occurred earlier and more visibly in Y34. Drought stress inhibited the growth of both genotypes but increased the root/shoot ratio more pronouncedly in M20 than in Y34. Under drought conditions, M20 maintained a higher leaf water status than Y34 due to its denser trichomes and more sensitive stomatal control, which minimized the transpiration rate. Y34 was more vulnerable to drought, resulting in larger decreases in photosystem II efficiency, initial Rubisco activity and chlorophyll concentration. H2O2, O2 , and MDA contents were significantly increased in both genotypes; however, these increases were smaller in M20, possibly due to a greater enhancement of antioxidant enzyme activities and related-gene expression levels. Moreover, M20 accumulated soluble sugars and proline to greater levels to counter reduced soil moisture. These adaptive mechanisms enabled M20 to recover more rapidly after re-watering. Our findings provide guidance for improving the drought tolerance of Chinese watermelon cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

P n :

Photosynthetic rate

RWC:

Relative water content

SWA:

Soil water availability

C i :

Intercellular CO2 concentration

T r :

Transpiration rate

G s :

Stomatal conductance

qP:

Photochemical quenching

NPQ:

Nonphotochemical quenching

F v/F m :

Maximum photochemical efficiency of PSII

ΦPSII:

Actual photochemical efficiency of PSII

ETR:

Electron transport rate

H2O2 :

Hydrogen peroxide

O2 :

Superoxide anion radical

MDA:

Malondialdehyde

SOD:

Superoxide dismustase

CAT:

Catalase

APX:

Ascorbate peroxidase

GR:

Glutathione reductase

AsA:

Ascorbate

DHA:

Dehydroascorbate

GSH:

Glutathione

GSSG:

Oxidized glutathione

PAO:

Pheide a oxygenase

PPH:

Pheophytin pheophorbide hydrolase

References

  • Bai T, Li C, Ma F, Feng F, Shu H (2010) Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil 327(1–2):95–105. doi:10.1007/s11104-009-0034-x

    Article  CAS  Google Scholar 

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428

    Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MG, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2(2):48–54. doi:10.1016/s1360-1385(97)82562-9

    Article  Google Scholar 

  • de Souza TC, Magalhães PC, de Castro EM, Carneiro NP, Padilha FA, Júnior CCG (2014) ABA application to maize hybrids contrasting for drought tolerance: changes in water parameters and in antioxidant enzyme activity. Plant Growth Regul 73(3):205–217

    Article  Google Scholar 

  • Diaz-Lopez L, Gimeno V, Simon I, Martinez V, Rodriguez-Ortega WM, Garcia-Sanchez F (2012) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agric Water Manag 105:48–56. doi:10.1016/j.agwat.2012.01.001

    Article  Google Scholar 

  • Du K, Xu L, Wu H, Tu B, Zheng B (2012) Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance. Flora 207(2):96–106

    Article  Google Scholar 

  • FAO of the United Nations (2015) Food and agricultural commodities production. FAO of the United Nations. http://faostat3.fao.org/download/Q/QC/E.2013

  • Flexas J, Barón M, Bota J, Ducruet J-M, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). J Exp Bot 60(8):2361–2377

    Article  CAS  PubMed  Google Scholar 

  • Gao J (2000) Experimental techniques of plant physiology. World Publishing Corporation, Xi’an

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M (2009) Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hortic (Amsterdam) 119(3):257–263. doi:10.1016/j.scienta.2008.08.006

    Article  CAS  Google Scholar 

  • Guo W, Chen R, Gong Z, Yin Y, Ahmedand S, He Y (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res 11(4):4063–4080

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. BBA Bioenergetics 1807(8):977–988

    Article  PubMed  Google Scholar 

  • Hu LX, Wang ZL, Huang BR (2010) Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C-3 perennial grass species. Physiol Plant 139(1):93–106. doi:10.1111/j.1399-3054.2010.01350.x

    Article  CAS  PubMed  Google Scholar 

  • Hunsche M, Bürling K, Saied AS, Schmitz-Eiberger M, Sohail M, Gebauer J, Noga G, Buerkert A (2010) Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves. Plant Growth Regul 61(3):253–263 (211)

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol 41(7):864–873

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS One 9(2):e90612

    Article  Google Scholar 

  • Li J, Besseau S, Törönen P, Sipari N, Kollist H, Holm L, Palva ET (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200(2):457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Liu B, Li M, Cheng L, Liang D, Zou Y, Ma F (2012) Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress. Plant Growth Regul 67(3):247–256

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Logan BA, Grace SC, Adams WW III, Demmig-Adams B (1998) Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116(1–2):9–17

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668. doi:10.1093/jexbot/51.345.659

    Article  CAS  PubMed  Google Scholar 

  • Moustakas M, Sperdouli I, Kouna T, Antonopoulou C-I, Therios I (2011) Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regul 65(2):315–325. doi:10.1007/s10725-011-9604-z

    Article  CAS  Google Scholar 

  • Posch S, Bennett LT (2009) Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol 11:83–93. doi:10.1111/j.1438-8677.2009.00245.x

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  PubMed  Google Scholar 

  • Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokota A (2011) Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiol Plant 142(3):247–264

    Article  CAS  PubMed  Google Scholar 

  • Sapeta H, Miguel Costa J, Lourenco T, Maroco J, van der Linde P, Margarida Oliveira M (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84. doi:10.1016/j.envexpbot.2012.08.012

    Article  CAS  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151(1):275–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Dubey R (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221. doi:10.1007/s10725-005-0002-2

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296. doi:10.1007/s00572-008-0180-7

    Article  CAS  PubMed  Google Scholar 

  • Si Y, Zhang C, Meng S, Dane F (2009) Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep 28(6):997–1009. doi:10.1007/s00299-009-0703-5

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Gu J, Zeng J, Han S, Song A, Chen F, Fang W, Jiang J, Chen S (2013) Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress. Sci Hortic (Amsterdam) 161:249–258. doi:10.1016/j.scienta.2013.07.015

    Article  CAS  Google Scholar 

  • Talbi S, Romero-Puertas MC, Hernandez A, Terron L, Ferchichi A, Sandalio LM (2015) Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environ Exp Bot 111:114–126. doi:10.1016/j.envexpbot.2014.11.004

    Article  Google Scholar 

  • Wang S, Liang D, Li C, Hao Y, Ma F, Shu H (2012) Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol Biochem 51:81–89. doi:10.1016/j.plaphy.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Liang D, Ma F (2014) Leaf micromorphology and sugar may contribute to differences in drought tolerance for two apple cultivars. Plant Physiol Biochem 80:249–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Gong G, Guo S, Ren Y, Xu Y, Ling K-S (2011) Screening the USDA watermelon germplasm collection for drought tolerance at the seedling stage. HortScience 46(9):1245–1248

    CAS  Google Scholar 

  • Zhang L, Zhang L, Sun J, Zhang Z, Ren H, Sui X (2013) Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Sci Hortic (Amsterdam) 161:81–87. doi:10.1016/j.scienta.2013.06.029

    Article  CAS  Google Scholar 

  • Zhang M, Jin ZQ, Zhao J, Zhang G, Wu F (2015) Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regul 75(2):567–574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Modern Agro-industry Technology Research System of China (CARS-26-18), and Shaanxi Provincial Science and Technology Research and Development Project Fund, China (No. 2015NY091). The authors are grateful to Joshua M. and Mike F. for help in revising the use of English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Zhang.

Additional information

Yanling Mo and Ruiping Yang have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Y., Yang, R., Liu, L. et al. Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79, 229–241 (2016). https://doi.org/10.1007/s10725-015-0128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0128-9

Keywords

Navigation