Skip to main content

Advertisement

Log in

The difference in responses to nitrogen deprivation and re-supply at seedling stage between two barley genotypes differing nitrogen use efficiency

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Understanding how crops respond to limited nitrogen supply is essential to develop new ways of manipulating genes for breeding new crop cultivars or lines with high nitrogen use efficiency (NUE). However, little is known about the differences among barley (Hordeum vulgare L.) genotypes in their responses to N starvation and subsequent N re-supply. In this study, two barley genotypes, BI-04 (higher NUE) and BI-45 (lower NUE) were used to investigate N uptake and assimilation at seedling stage in response to N deprivation and re-supply at low (3.75 mM) and normal (7.5 mM) levels. Compared to the continues normal N supply, under N deprivation, both genotypes exhibited less total biomass and N accumulation, but had higher N uptake efficiency, with BI-04 having more biomass, N accumulation and nitrate reductase activity than BI-45. The higher nitrate reductase activity in roots of BI-04 versus BI-45 was associated with up-regulated HvNar1 gene expression under N deprivation condition. NUE of both genotypes was higher under low N re-supply than under normal N re-supply after N deprivation. In addition, glutamine synthetase activity in the two barley roots was higher under low N re-supply than under normal N re-supply, which was associated with the expression of HvGS1_1 and HvGS1_2 genes. Compared to the lower NUE genotype (BI-45), the higher NUE genotype (BI-04) under low N re-supply performed better in response to N stress, and may require relatively less N fertilizer application in production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bustin SA, Benes V et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  • Céline RM, Anne K, Francxois B, Bertrand N et al (2008) Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot 59(4):779–791. doi:10.1093/jxb/erm363

    Article  Google Scholar 

  • Chen ZW, Zou L, Lu RJ et al (2010) The study on the relationship between the traits for low-nitrogen tolerance of different barley genotypes at seedling stage and grain yield. J Triticeae Crops 30(1):158–162. doi:10.1016/j.jcs.2013.06.009

    CAS  Google Scholar 

  • Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A (2008) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117:729–747. doi:10.1007/s00122-008-0815-2

    Article  CAS  PubMed  Google Scholar 

  • De Macale MAR, Velk PLG (2004) The role of Azolla covers in improving the nitrogen useefficiency of lowland rice. Plant Soil 263(1):311–321. doi:10.1023/B:PLSO.0000047742.67467.50

    Article  Google Scholar 

  • Ding CQ, Wang Y, You SL, Liu ZH, Wang SH, Ding YF (2015) Digital gene expression analysis reveals nitrogen fertilizer increases panicle size by repressing Hd3a signaling in rice. Plant Growth Regul. doi:10.1007/s10725-015-0108-0

    Google Scholar 

  • Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR (2007) Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Ann Bot (Lond) 99:1153–1160. doi:10.1093/aob/mcm051

    Article  CAS  Google Scholar 

  • Fan XR, Jia LJ, Li YL et al (2007) Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot 58(7):1729–1740. doi:10.1093/jxb/erm033

    Article  CAS  PubMed  Google Scholar 

  • Fuentas SI, Allen DJ, Ortiz-Lopez A, Hernández G (2001) Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot 52(358):1071–1081. doi:10.1093/jexbot/52.358.1071

    Article  Google Scholar 

  • Goodall AJ, Kumar P, Tobin AK (2013) Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.). Plant Cell Physiol 54(4):492–505. doi:10.1093/pcp/pct006

    Article  CAS  PubMed  Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138(1):83–89. doi:10.1111/j.1744-7348.2001.tb00087.x

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Barraclough P (2011) The molecular and physiological basis of nutrient use efficiency in crops. Blackwell, London

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Ishiyama K, Inoue E, Tabuchi M et al (2004a) Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol 45(11):1640–1647. doi:10.1093/pcp/pch190

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama K, Inoue E, Watanabe-Takahashi A et al (2004b) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279(16):16598–16605. doi:10.1074/jbc.M313710200

    Article  CAS  PubMed  Google Scholar 

  • Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62(4):1499–1509. doi:10.1093/jxb/erq297

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2015) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul. doi:10.1007/s10725-015-0071-9

    Google Scholar 

  • Kleinhofs A, Warner RL (1990) Advances in nitrate assimilation. In: Stumpf PK, Conn EE, Miflin BJ, Lea PJ (eds) The biochemistry of plants, vol 16, intermediary nitrogen metabtdism. Academic Press, New York, pp 89–120

  • Li BZ, Xin WJ, Sun SB, Shen QR, Xu GH (2006) Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil 287:145–159. doi:10.1007/s11104-006-9051-1

    Article  CAS  Google Scholar 

  • Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi YM, Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot 59:2933–2944. doi:10.1093/jxb/ern148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozuelo M, MacKintosh C, Galván A et al (2001) Cytosolic glutamine synthetase and not nitrate reductase from the green alga Chlamydomonas reinhardtii is phosphorylated and binds 14-3-3 proteins. Planta 212(2):264–269. doi:10.1007/s004250000388

    Article  CAS  PubMed  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363. doi:10.2134/agronj1999.00021962009100030001x

    Article  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11(9):440–448. doi:10.1016/j.tplants.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  • Shi WM, Xu WF, Li SM, Zhao XQ, Dong GQ (2010) Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil 326:291–302. doi:10.1007/s11104-009-0007-0

    Article  CAS  Google Scholar 

  • Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-Encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058. doi:10.1105/tpc.104.022046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidmar JJ, Zhuo D, Siddiqi MY et al (2000) Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of barley. Plant Physiol 122(3):783–792. doi:10.1104/pp.122.3.783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viégas RA, Barreto de Melo AR, Gomes da Silveira JA (1999) Nitrate reductase activity and proline accumulation in cashew in response to NaCl salt shock. Revista Brasileira de Fisiologia Vegetal 11(1):21–2821

    Google Scholar 

  • Xu GH, Fan XR, Miller AJ (2012) Plant Nitrogen Assimilation and Use Efficiency. Annu Rev Plant Biol 63:153–182. doi:10.1146/annurev-arplant-042811-105532

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wu J, Ziegler TE, Yang X et al (2011) Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiol 157:1841–1852. doi:10.1104/pp.111.187898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Loqué D, Ye F et al (2007) Nitrogen-dependence posttranscriptional regulation of the ammonium transporter AtAMT1; 1. Plant Physiol 143:732–744. doi:10.1104/pp.106.093237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CF, Peng SB, Peng XX et al (1997) Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots. Plant Sci 125:163–170. doi:10.1016/S0168-9452(97)00075-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Professor Nigel G. Halford (Rothamsted research, UK) and Dr. Wing-Sham Lee (Rothamsted research, UK) for a critical review of the manuscript. This work was financially supported by the young talent development program from Shanghai Agriculture Committee under terms of Project No. 2014(1-21), the project from Shanghai seed industry development, Shanghai Agricultural Science and Technology No. 2015(3) and the project from National Barley Industry Technology System (CARS-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Huang.

Additional information

Chenghong Liu is the co-first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (JPG 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liu, C., Lu, R. et al. The difference in responses to nitrogen deprivation and re-supply at seedling stage between two barley genotypes differing nitrogen use efficiency. Plant Growth Regul 79, 119–126 (2016). https://doi.org/10.1007/s10725-015-0117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0117-z

Keywords

Navigation