Skip to main content
Log in

Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The objective of this study was to map and characterize QTLs for traits related to nitrogen utilization efficiency (NUE), grain N yield, N-remobilization and post-silking N-uptake. Furthermore, to examine whether QTLs detected with recombinant inbred lines (RILs) crossed to a tester are common to those detected with line per se evaluation, both types of evaluations were developed from the same set of RILs. The material was studied over two years at high N-input, and one year at low N-input. We used 15N-labelling to evaluate with accuracy the proportion of N remobilized from stover to kernels and the proportion of postsilking N-uptake allocated to kernels. With 59 traits studied in three environments, 608 QTLs were detected. Using a method of QTL clustering, 72 clusters were identified, with few QTLs being specific to one environment or to the type of plant material (lines or testcross families). However, considering each trait separately, few QTLs were common to both line per se and testcross evaluation. This shows that genetic variability is expressed differently according to the type of progeny. Studies of coincidences among QTLs within the clusters showed an antagonism between N-remobilization and N-uptake in several QTL-clusters. QTLs for N-uptake, root system architecture and leaf greenness coincided positively in eight clusters. QTLs for remobilization mainly coincided in clusters with QTLs for leaf senescence. On the whole, sign of coincidences between QTLs underlined the role of a “stay-green” phenotype in favouring N-uptake capacity, and thus grain yield and N grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASI:

Anthesis-silking interval

GDH:

Glutamate dehydrogenase

GS:

Glutamine synthetase

N:

Nitrogen

NHI:

Nitrogen harvest index

NNI:

Nitrogen nutrition index

NUE:

Nitrogen utilization efficiency

NUtE:

Nitrogen utilization efficiency

QTL:

Quantitative trait locus

RIL:

Recombinant inbred lines

References

  • Agrama H, Zakaria A, Said F, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breeding 5:187–195

    Article  Google Scholar 

  • Andrade FH, Echarte L, Rizzalli R, Della Maggiora A, Casanovas M (2002) Kernel number prediction in maize under nitrogen or water stress. Crop Sci 42:1173–1179

    Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Austin DF, Lee M, Veldboom LR, Hallauer AR (2000) Genetic mapping in maize with hybrid progeny across testers and generations grain yield and grain moisture. Crop Sci 40:30–39

    Google Scholar 

  • Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny in maize. Crop Sci 34:882–886

    Google Scholar 

  • Bertin P, Gallais A (2000) Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines I. Agrophysiological results. Maydica 45:53–66

    Google Scholar 

  • Bertin P, Gallais A (2001) Physiological and genetic basis of nitrogen use efficiency. II. QTL detection and coincidences. Maydica 46:53–68

    Google Scholar 

  • Borrell A, Hammer G (2000) Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci 40:1295–1307

    Google Scholar 

  • Borrell A, Hammer G, van Oosterom E (2001) Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling? Ann Appl Biol 138:91–95

    Article  Google Scholar 

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favourable alleles at quantitative trait loci between maize elite lines. Genetics 162:945–1959

    Google Scholar 

  • Causse M, Santoni S, Damerval C, Maurice A, Charcosset A, Deatrick J, de Vienne D (1996) A composite map of expressed sequences in maize. Genome 39:418–432

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676

    Article  CAS  Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize traits in maize. Theor Appl Genet 112:1205–1220

    Article  PubMed  CAS  Google Scholar 

  • Coque M, Gallais A (2007) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 1. Evaluation by 15N-labeling, heritabilities and correlations among traits for testcross performance. Crop Sci 47:1787–1796

    Article  CAS  Google Scholar 

  • Coque M, Gallais A (2008) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 2. With line per se evaluation, comparison with testcross performance. Maydica (in press)

  • Dubois F, Terce-Laforgue T, Gonzalez-Moro M-B, Estavillo J-M, Sangwan R, Gallais A, Hirel B (2003) Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol Biochem 41:565–576

    Article  CAS  Google Scholar 

  • Echarte L, Andrade FH, Vega CRC, Tollenaar M (2004) Kernel number determination in Argentinean maize hybrids released between 1965 and 1993. Crop Sci 44:1654–1661

    Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    Article  PubMed  CAS  Google Scholar 

  • Gallais A, Coque M (2005) Genetic variation for nitrogen use efficiency in maize: a synthesis. Maydica 50:531–547

    Google Scholar 

  • Gallais A, Coque M, Quilleré I, Prioul JL, Hirel B (2006) Modelling post-silking N-fluxes in maize using 15N-labeling-field experiments. New Phytol 172:696–607

    Article  PubMed  CAS  Google Scholar 

  • Gallais A, Coque M, Quilleré I, Le Gouis J, Prioul JL, Hirel B (2007) Estimating proportions of N-remobilization and of post-silking N-uptake allocated to maize kernels by 15N labeling. Crop Sci 47:685–691

    Article  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Guingo E, Hébert Y, Charcosset A (1998) Genetic analysis of root traits in maize. Agronomie 18:225–235

    Article  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames, 468p

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Martin A, Tercé-Laforgue T, Gonzalez-Moro MB, Estavillo JM (2005a) Physiology of maize I: A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol Plant 124:167–177

    Article  CAS  Google Scholar 

  • Hirel B, Andrieu B, Valadier MH, Renard S, Quillere I, Chelle M, Pommel B, Fournier C, Drouet JL (2005b) Physiology of maize. II: Identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiol Plant 124:178–188

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS 100:2574–2579

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Azevedo RA (2006) Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Ann Appl Biol 149:243–247

    Article  CAS  Google Scholar 

  • Lemaire G, Gastal F (1997) N-uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Verlag, Berlin, pp 3–43

    Google Scholar 

  • Limami AM, Rouillon C, Glevarec G, Gallais A, Hirel B (2002) Genetic and physiological analysis of germination efficiency in maize in relation to N metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiol 130:1860–1870

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Daly A, Lander E (1993) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0. Withehead Institute

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatou C, Balliau T, Valot B, Davanture M, Dubois F, Terce-Laforgue T, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Quillere I, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize (Zea mays L.) are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  PubMed  CAS  Google Scholar 

  • Masclaux C, Valadier MH, Brugiere N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211:510–518

    Article  PubMed  CAS  Google Scholar 

  • Pan WL, Kamprath EJ, Moll RH, Jackson WA (1984) Prolificacy in corn: its effects on nitrate and ammonium uptake and utilization. Soil Sci Soc Am 48:1101–1106

    CAS  Google Scholar 

  • Presterl T, Groh S, Landbeck M, Seitz G, Schmidt W, Geiger HH (2002) Nitrogen uptake and utilization efficiency of European maize hybrids developed underconditions of low and high nitrogen input. Plant Breeding 121:480–486

    Article  Google Scholar 

  • Sampoux JP, Gallais A, Lefort-Buson M (1989) Intérêt de la valeur propre des descendances S1 associée à la valeur en croisement avec un testeur pour la sélection du maïs fourrage. Agronomie 9:511–520

    Article  Google Scholar 

  • Skopelitis DS, Paranychiankis NV, Paschalidis KA, Plianokis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis A, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenase to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  PubMed  CAS  Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 lead to additive expression patterns in the F1 hybrid. Genetics 173:2199–2210

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Wu LM NIZF, Meng FR, Wang ZK, Lin Z (2004) Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Sci 166:651–657

    Article  CAS  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Snable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbre parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  PubMed  CAS  Google Scholar 

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  PubMed  CAS  Google Scholar 

  • Tang JH, Ma XQ, Teng WT, Yan JB, Wu WR, Dai JR, Li JS (2007) Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chin Sci Bull 52:477–483

    Google Scholar 

  • Tercé-Laforgue T, Mäck G, Hirel B (2004) New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (Nicotiana tabacum L.) plants grown under different nitrogen regimes. Physiol Plant 120:220–228

    Article  PubMed  Google Scholar 

  • Tolley-Henry L, Raper CD Jr (1991) Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance. Bot Gaz 152:23–33

    Article  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, MacCaferri M, Conti S (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89:941–963

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa R, Giuliani S, Parry MAJ, Araus JL (2007) Improving water use efficiency in Mediterranean agriculture: what limits the adoption of new technologies? Ann Appl Biol 150(2):157–162

    Article  Google Scholar 

  • Utz HF, Melchinger AE (1995) PLABQTL: a computer program to map QTL. J QTL. 1

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinf 8:49

    Article  Google Scholar 

  • Vincent R, Fraisier V, Chaillou S, Limami MA, Deléens E, Phillipson B, Douat C, Boutin JP, Hirel B (1997) Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201:424–433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr P.J. Lea for helpful suggestions on the scientific content and correction of the English. We also express all our thanks to one reviewer and to the editor for their helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gallais.

Additional information

Communicated by J.-L. Jannink.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (JPEG 176 kb)

MOESM2 [INSERT CAPTION HERE] (JPEG 60 kb)

MOESM3 [INSERT CAPTION HERE] (JPEG 117 kb)

MOESM4 [INSERT CAPTION HERE] (JPEG 87 kb)

MOESM5 [INSERT CAPTION HERE] (JPEG 94 kb)

MOESM6 [INSERT CAPTION HERE] (JPEG 85 kb)

MOESM7 [INSERT CAPTION HERE] (JPEG 135 kb)

MOESM8 [INSERT CAPTION HERE] (JPEG 120 kb)

MOESM9 [INSERT CAPTION HERE] (JPEG 53 kb)

MOESM10 [INSERT CAPTION HERE] (JPEG 123 kb)

MOESM11 [INSERT CAPTION HERE] (JPEG 81 kb)

MOESM12 [INSERT CAPTION HERE] (JPEG 148 kb)

MOESM13 [INSERT CAPTION HERE] (JPEG 43 kb)

MOESM14 [INSERT CAPTION HERE] (JPEG 141 kb)

MOESM15 [INSERT CAPTION HERE] (JPEG 120 kb)

MOESM16 [INSERT CAPTION HERE] (JPEG 187 kb)

MOESM17 [INSERT CAPTION HERE] (JPEG 168 kb)

MOESM18 [INSERT CAPTION HERE] (JPEG 88 kb)

MOESM19 [INSERT CAPTION HERE] (JPEG 171 kb)

MOESM20 [INSERT CAPTION HERE] (JPEG 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coque, M., Martin, A., Veyrieras, J.B. et al. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117, 729–747 (2008). https://doi.org/10.1007/s00122-008-0815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0815-2

Keywords

Navigation