Skip to main content
Log in

Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Glucose (Glc) is an essential signaling molecule that controls plant development and gene expression, but little is known about its role in salt stress resistance on seed germination and plant growth. Here we report the effects of exogenous Glc on wheat seed germination and seedling growth under salt stress. The treatments used were 0 and 200 mM NaCl solutions supplemented with each of four Glc concentrations of 0, 0.1, 0.5 and 50 mM. The results showed that salt alone significantly inhibited seeds germination and reduced the growth of wheat seedlings. Addition of exogenous Glc in the salt solution attenuated the salt stress effects in a dose-dependent manner of Glc, as indicated by enhancement of the growth of celoeptile and radicle. Glc addition also showed significant reversal of salt stress in chlorophyll decay, water loss, dry weight, root length and accumulation of proline. The Glc-induced salt stress resistance was associated with enhanced K+ and K+/Na+ ratio in leaves, and activated antioxidant enzymes activities, thus decreasing thiobarbituric acid reactive substances (TBARS) and malondialdehyde (MDA) contents. As our knowledge this is the first report to show the protective effects of exogenous Glc against salt-induced oxidative damage in wheat seedlings associating with the evidences of ion homeostasis in cells and a better antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aliakbar MM, Kobra M (2008) Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J Agri Sci 4(3):351–358

    Google Scholar 

  • Allen SE, Grimshaw HM, Rowland AP (1986) Chemical Analysis. In: Moore PD, Chapman SB (eds) Methods in Plant Ecology, 2nd edn. Blackwell Scientific Publications, Oxford, pp 285–344

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowksi AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Bio Chem 279:49883–49888

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Bor M, Özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritime L.). Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Chantal F, Jaleh G, Gabriel C (2007) Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. J Exp Bot 58:2983–2992

    Article  Google Scholar 

  • Chen Y, Ji F, Xie H, Liang J, Zhang J (2006) The regulator of G protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140:302–310

    Article  PubMed  CAS  Google Scholar 

  • Clifford SC, Arndt SK, Corlett JE, Joshi S, Sankhla N, Popp M, Jones HG (1998) The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). J Exp Bot 49:967–977

    CAS  Google Scholar 

  • Dekkers BJ, Schuurmans JA, Smeekens SC (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218(4):579–588

    Article  PubMed  CAS  Google Scholar 

  • Esechie HA (1995) Partitioning of chloride ion in the germinating seed of two forage legumes under varied salinity and temperature regimes. Comm Soil Sci Plant Anal 26(19–20):3357–3370

    Article  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol 122:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to colletotrchum lagenarium. Physiol. Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Heineke D, Sonnewald U, Büssis D, Günter G, Leidreiter K, Wilke I, Raschke K, Willmitzer L, Heldt HW (1992) Apoplastic expression of yeast-derived invertase in potato. Plant Physiol 100:301–308

    Article  PubMed  CAS  Google Scholar 

  • Ho SL, Chao YC, Tong WF, Yu SM (2001) Sugar coordinately and differentially regulates growth- and stress-regulated gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol 125:877–890

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substance assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hsiao TC, Lauchli A (1986) Role of potassium in plant-water relations. In: Tinker B, Lauchli A, (eds) Advances in plant nutrition, vol 2. Praeger Scientific, New York, pp 281–312

  • Hu MY, Li H, Zhang YJ, Liu Q (2009) Photosynthesis and related physiological characteristics affected by exogenous glucose in wheat seedlings under water stress. Acta Agronomica Sinica 35(4):724–732

    Article  CAS  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugar in nodulated alfalfa (Medicago sativa) plants. Plant Physiol 84:55–60

    Article  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Sanavy SAMM, Allahdadi I, Moradi F (2011) Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regul 65:305–313

    Article  Google Scholar 

  • Jiang MY (1999) Generation of hydroxyl radicals and its relation to cellular oxidative damage in plant subjected to water stress. Acta Bot Sin 41(3):229–234

    CAS  Google Scholar 

  • Jiang MY, Yang WY, Xu J, Chen QY (1994) Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress. Acta Bot Sin 36(4):289–295

    CAS  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2000) Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress. Plant Growth Regul 30:61–70

    Article  CAS  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Korkmaz A, Korkmaz Y, Demirklran AR (2010) Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Exp Bot 67:495–501

    Article  CAS  Google Scholar 

  • Larher F, Leport L, Petrivalsky M, Cappart M (1993) Effectors for the osmoinduced proline response in higher plants. Plant Physiol Biochem 31:911–922

    CAS  Google Scholar 

  • Liu T, Van Staden J (2001) Partitioning of carbohydrates in salt- sensitive and salt-tolerant soybean callus cultures under salinity stress and its subsequent relief. Plant Growth Regul 33:13–17

    Article  CAS  Google Scholar 

  • Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  PubMed  CAS  Google Scholar 

  • Michael M, Ilektra S, Theodora K, Chrysovalantou-Irene A, Ioannis T (2011) Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regul 65:315–325

    Article  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2002) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to saltdependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radical Res 36:195–202

    Article  CAS  Google Scholar 

  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JD (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167

    Article  PubMed  CAS  Google Scholar 

  • Mostafa H, Parisa J (2011) Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agric Sci China 10(2):228–237

    Article  Google Scholar 

  • Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Shen B, Bohnert HJ (1998) Salinity tolerance: mechanisms, models and the metabolic engineering of complex traits. In: Setlow JK (ed) Genetic Engineering, Principles and Methods, vol 20. Plenum Press, New York, pp 153–176

    Google Scholar 

  • Prado FE, Boero C, Gallardo M, González JA (2000) Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd Seeds. Bot Bull Acad Sin 41:27–34

    CAS  Google Scholar 

  • Praxedes SC, DaMatta FM, Loureiro ME (2006) Effects of long-term soil drought on photosynthesis and carbonhydrate in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273

    Article  CAS  Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    Article  PubMed  CAS  Google Scholar 

  • Price J, Laxmi A, Martin SKS, Janga JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  PubMed  CAS  Google Scholar 

  • Rahnama H, Ebrahimzadeh H (2004) The effect of NaCl on proline accumulation in 422 potato seedlings and calli. Acta Physiol Plant 26:263–270

    Article  CAS  Google Scholar 

  • Ramagopal S (1987) Salinity stress induced tissue specific proteins in barley seedlings. Plant Physiol 84:324–331

    Article  PubMed  CAS  Google Scholar 

  • Ritsema T, Smeekens S (2003) Fructan: beneficial for plants and humans. Curr Opin Plant Biol 6:223–230

    Article  PubMed  CAS  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748

    Article  PubMed  CAS  Google Scholar 

  • Scarpeci TE, Valle EM (2008) Rearrangement of carbon metabolism in Arabidopsis thaliana subjected to oxidative stress condition: an emergency survival strategy. Plant Growth Regul 54:133–142

    Article  CAS  Google Scholar 

  • Seki M, Narusaki M, Ishida J, Nanjo T, Fujita M, Oone Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Shinozaki KY, Carninci P, Kawai J, Hayashizaki KY, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full length cDNA micro array. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant, Cell Environ 33:1838–1851

    Article  CAS  Google Scholar 

  • Sloeimanzadeh H, Habibi D, Ardakani M, Paknejad F, Rejali F (2010) Effect of potassium levels on antioxidant enzymes and malondialdehyde content under drought stress in Sunflower (Helianthus annuus L.). Am J Agri Biol Sci 5(1):56–61

    Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salttolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Plant Physiol 109:435–442

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends in Plant Sci 13:178–182

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell Environ 27:1–14

    Article  CAS  Google Scholar 

  • Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Xing H, Tan L, An L, Zhao Z, Wang S, Zhang C (2004) Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Reg 42:61–68

    Article  CAS  Google Scholar 

  • Yin H, Chen Q, Yi M (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54:45–54

    Article  CAS  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gongshe Hu for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Shi, Z., Zhang, Z. et al. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul 68, 177–188 (2012). https://doi.org/10.1007/s10725-012-9705-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9705-3

Keywords

Navigation