Skip to main content
Log in

Effect of seed-specific expression of the ipt Gene on Nicotiana tabacum L. seed composition

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A transgenic approach to manipulation of endosperm development has been investigated. Nicotiana tabacum cv. Xanthi, an endosperm-containing dicotyledon, has been used as a model plant and the 2.6 kb wheat high molecular weight (HMW) glutenin subunit 12 promoter has been used fused either to the gus reporter gene (HMWgus construct)—to study promoter characteristics—or to the Agrobacterium ipt gene—to study the effect of cytokinin (CK) over-expression on assimilate accumulation in the seed. In transgenic tobacco the promoter:gus fusion showed that HMW is an endosperm-specific promoter with maximum expression 20 days after anthesis (DAA), corresponding to the mid to late stages of seed development. Transgenic plants containing the HMWipt construct showed no morphological abnormalities but they had an average increase in seed weight and total ethanol-insoluble carbohydrates and protein content of 8.1%, 7.0% and 8.3%, respectively. SDS PAGE analysis demonstrated that the effect on protein accumulation was non-specific. The highest values of the parameters analysed correlated with moderate increases in the levels of biologically active CKs. These results suggest that ectopic expression of small amounts of CKs can be used to increase storage assimilate accumulation without a detrimental effect on development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartels D, Thompson RD (1986) Synthesis of mRNAs coding for abundant endosperm proteins during wheat grain development. Plant Sci 46:117–125

    Article  CAS  Google Scholar 

  • Bieleski RL (1964) The problem of halting enzyme action when extracting plant tissues. Anal Biochem 9:431–442

    Article  PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Ann Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • den Boer B, Murray J (2000) Triggering the cell cycle in plants. Trends Cell Biol 10:245–260

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Dietrich JT, Kaminek M, Blevins DG, Reinbott TM, Morris RO (1995) Changes in cytokinins and cytokinin oxydase activity in developing maize kernels and the effects of exogenous cytokinin on kernel development. Plant Physiol Biochem 33:289–294

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA (1998) cis-Isomers of cytokinins predominate Cicer arietinium throughout their development. Plant Physiol 117:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604

    Article  PubMed  CAS  Google Scholar 

  • Erdelska O (1985) Dynamics of the development of embryo and endosperm I. (Papaver somniferum, Nicotiana tabacum, Jasione montana). Biologia 40:17–30

    Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Goodall GJ, Filipowicz W (1991) Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10:2635–2644

    PubMed  CAS  Google Scholar 

  • Hartree E (1971) A modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  Google Scholar 

  • Higgins TJV, Newbigin EJ, Spencer D, Liewellyn DJ, Craig S (1988) The sequence of a pea vicillin gene and its expression in transgenic tobacco plants. Plant Mol Biol 11:683–695

    Article  CAS  Google Scholar 

  • Hobbs SL, Warkentin TD, DeLong CM (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jameson PE, McWha JA, Wright GJ (1982) Cytokinin and changes in their activity during the development of grains of wheat (Triticum aestivum L.). Z Pflanzenphysiol 106:27–36

    CAS  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kaminek M, Armstrong DJ (1990) Genotypic variations in cytokinin oxidase from Phaseolus callus cultures. Plant Physiol 93:1530–1538

    PubMed  CAS  Google Scholar 

  • Kaminek M, Trckova M, Motyka V, Gaudinova A (1994) Role of cytokinins in control of wheat grain development and utilization of nutrients. Biol Plant (suppl) 36:15

    Google Scholar 

  • Kathuria H, Mohanty A, Tyagi AK (2003) Analysis of inheritability and expression profile of single and multi-copy trangene(s) in rice over generations. J Plant Biochem Biotechnol 12:103–107

    CAS  Google Scholar 

  • Keith B, Chua N-H (1986) Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5:2419–2425

    PubMed  CAS  Google Scholar 

  • Ku MSB, Agarie S, Nomura A, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17:76–80

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Ma QH, Zhang R, Hocart CH, Letham DS, Higgins TJV (1998) Seed-specific expression of the isopentenyl transferase gene (ipt) in transgenic tobacco. Austr J Plant Physiol 25:53–59

    CAS  Google Scholar 

  • Matzke M, Matzke AM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  • McCormac AC, Elliott MC, Chen DF (1999) PBECKS2000: a novel plasmid series for the facile creation of complex binary vectors, which incorporates “clean-gene” facilities. Mol Gen Genet 261:226–235

    Article  PubMed  CAS  Google Scholar 

  • Michael G, Seiler-Kelbitsch H (1972) Cytokinin content and kernel size of barley grains as affected by environmental and genetic factors. Crop Sci 12:162–165

    Article  Google Scholar 

  • Michaels SD, John MC, Amasino RM (1994) Removal of polysaccharides from plant DNA by ethanol precipitation. BioTechniques 17:275–276

    Google Scholar 

  • Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured Bright Yellow-2 tobacco cells. Plant Physiol 121:461–469

    Article  PubMed  CAS  Google Scholar 

  • Morris RO, Blevins DG, Dietrich JT, Durley RC, Gelvin SB, Gray J, Hommes NG, Kaminek M, Mathews LJ, Meilan R, Reinbott TM, Sayavedra-Sotto L (1993) Cytokinins in plant pathogenic bacteria and developing cereal grains. Austr J Plant Physiol 20:621–637

    Article  CAS  Google Scholar 

  • Motyka V, Faiss M, Strnad M, Kaminek M, Schmulling T (1996) Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol 112:1035–1043

    PubMed  CAS  Google Scholar 

  • Motyka V, Kaminek M (1994) Cytokinin oxidase from auxin- and cytokinin-dependent callus cultures of tobacco (Nicotiana tabacum L.). J. Plant Growth Regul 13:1–9

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Ann Rev Plant Physiol Plant Mol Biol 52:233–267

    Article  CAS  Google Scholar 

  • Palni LMS, Burch L, Horgan R (1988) The effect of auxin concentration on cytokinin stability and metabolism. Planta 174:231–234

    Article  CAS  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA (1998) Micro and capillary liquid chromatography tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A 826:25–37

    Article  CAS  Google Scholar 

  • Redig P, Motyka V, van Onckelen HA, Kaminek M (1997) Regulation of cytokinin oxidase activity in tobacco callus expressing the T-DNA ipt gene. Physiol Plant 99:89–96

    Article  CAS  Google Scholar 

  • Redig P, Schmulling T, van Onckelen H (1996) Analysis of cytokinin metabolism in ipt transgenic tobacco by liquid chromatography-tandem mass spectrometry. Plant Physiol 122:141–148

    Google Scholar 

  • Reid JS, Edwards ME, Dickson CA, Scott C, Gidley MJ (2003) Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls. Plant Physiol 131:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Robert LS, Thompson RD, Flavell RB (1989) Tissue-specific expression of a wheat high molecular weight glutenin gene in transgenic tobacco. Plant Cell 1:569–578

    Article  PubMed  CAS  Google Scholar 

  • Roeckel P, Oancia T, Drevet J (1997) Effect of seed-specific expression of a cytokinin biosynthetic gene on canola and tobacco phenotypes. Transg Res 6:133–141

    Article  CAS  Google Scholar 

  • Sakai A, Kawano S, Kuroiwa T (1992) Conversion of proplastids to amyloplasts in tobacco cultured cells is accompanied by changes in the transcriptional activities of plastid genes. Plant Physiol 100:1062–1066

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Seghal CB, Gifford EM (1979) Development and histochemical studies of the ovules of Nicotiana rustica L. Bot Gaz 140:180–188

    Article  Google Scholar 

  • Song JY, Choi EY, Lee HS, Choi DW, Oh MH, Kim SG (1995) Effect of auxin on expression of the isopentenyl transferase gene (ipt) in transformed bean (Phaseolus vulgaris L.) single-cell clones induced by Agrobacterium tumefaciens C58. J Plant Physiol 146:148–154

    CAS  Google Scholar 

  • Thomas MS, Flavell RB (1990) Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. Plant Cell 2:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Thompson RD, Bartels D, Harberd NP (1985) Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMW-glutenin subunit. Nucl Acids Res 13:6833–6846

    Article  PubMed  CAS  Google Scholar 

  • Trchkova M, Kaminek M, Vach M, Zmrhal Z (1992) Regulation of grain formation and dry mass distribution in wheat plants by exogenous cytokinin in relation to nitrogen supply. Plant Physiol (suppl.) 99:3

    Google Scholar 

  • Whitty CD, Hall RH (1974) A cytokinin oxidase from Zea mays. Can J Biochem 52:789–799

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S (2000) Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul 30:261–270

    Article  CAS  Google Scholar 

  • Zhang R, Zhang X, Wang J, Letham DS, McKinney SA, Higgins TJV (1995) The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196:84–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a grant to S.D. from Royal Society/NATO foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daskalova, S., McCormac, A., Scott, N. et al. Effect of seed-specific expression of the ipt Gene on Nicotiana tabacum L. seed composition. Plant Growth Regul 51, 217–229 (2007). https://doi.org/10.1007/s10725-006-9162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-006-9162-y

Keywords

Navigation