Skip to main content

Advertisement

Log in

First insight into genetic diversity and population structure of the Caucasian wild apple (Malus orientalis Uglitzk.) in the Hyrcanian forest (Iran) and its resistance to apple scab and powdery mildew

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Investigating population genetic structure and diversity, and resistance to pathogens in crop wild relatives are key steps to assess appropriate conservation and breeding programs. The Caucasian wild apple (Malus orientalis Uglitzk.) is an emblematic fruit tree of the Hyrcanian forest and is supposed to be a contributor to the cultivated apple genome (Malus domestica Borkh. Yet, no study has investigated its population structure, diversity and susceptibility to the two main pathogens of apples, the apple scab (Venturia inaqualis) and the powdery mildew (Podosphaera leucotricha). Here, we investigated population genetic structure and diversity of M. orientalis in the Hyrcanian forest as a mean to identifying future targeted populations for apple conservation and breeding programs. We genotyped using multilocus microsatellite 100 M. orientalis trees sampled in 14 sites. These trees were also screened for presence/absence of six (Rvi6, Vr, Rvi4, Rvi15, Rvi5 and Rvi11) and three (Pl-1, Pl-w, Pl-d) resistance genes to the apple scab and the powdery mildew respectively. Our results showed significant but weak between-site genetic differentiation and isolation by distance pattern suggesting substantial historical gene flow for M. orientalis in this area. We also detected a West-Eastern genetic structure across the Hyrcanian forest with five main populations showing admixture. We also showed a high diversity of resistance genes to apple scab across sites; in contrast, we only found one resistance gene to powdery mildew. These results are a first glimpse to settle wild apple conservation programs in Iran and pinpoint Iranian wild apple populations as an untapped source for apple breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259(4):660–684

    Article  Google Scholar 

  • Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J (2013) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Change 3(1):73

    Article  Google Scholar 

  • Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci 108(6):2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J et al (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101(3):886–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Peil A, Fischer C, Dunemann F (2006) Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740-7A apple and its utility for molecular breeding. Tree Genet Genomes 2(4):186–195

    Article  Google Scholar 

  • Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE et al (2014) Climate change influences on marine infectious diseases: implications for management and society. Ann Rev Mar Sci 6(1):249–277

    Article  PubMed  Google Scholar 

  • Bus V, Rikkerink E, Van de Weg W, Rusholme R, Gardiner S, Bassett H et al (2005) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breed 15(1):103–116

    Article  CAS  Google Scholar 

  • Bus VG, Bassett HC, Bowatte D, Chagné D, Ranatunga CA, Ulluwishewa D, Wiedow C, Gardiner SE (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genoms 6(3):477–487

    Article  Google Scholar 

  • Bus V, Rikkerink EH, Caffier V, Durel C-E, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. Heredity 99(6):616–623

    Article  CAS  Google Scholar 

  • Chapuis M-P, Estoup A (2006) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631

    Article  PubMed  Google Scholar 

  • Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Resour 7(5):747–756

    Article  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41(2):208–214

    Article  CAS  Google Scholar 

  • Coart E, Vekemans X, Smulders MJ, Wagner I, Van Huylenbroeck J, Van Bockstaele E et al (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12(4):845–857

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Le Cam B et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8(5):e1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornille A, Gladieux P, Giraud T (2013) Crop-to-wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evol Appl 6(5):737–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornille A, Giraud T, Smulders MJ, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30(2):57–65

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Feurtey A, Gélin U, Ropars J, Misvanderbrugge K, Gladieux P et al (2015) Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evol Appl 8(4):373–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Cova V, Lasserre-Zuber P, Piazza S, Cestaro A, Velasco R, Durel CE et al (2015) High-resolution genetic and physical map of the Rvi1 (Vg) apple scab resistance locus. Mol Breed 35(1):16

    Article  Google Scholar 

  • Cunningham AA, Daszak P, Wood JLN (2017) One health, emerging infectious diseases and wildlife: two decades of progress? Philos Trans R Soc B Biol Sci 372(1725):20160167

    Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58

    Article  CAS  PubMed  Google Scholar 

  • Decroocq S, Cornille A, Tricon D, Babayeva S, Chague A, Eyquard JP et al (2016) New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol Ecol 25(19):4712–4729

    Article  CAS  PubMed  Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467(7316):704

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi L, Fotuhifar K-B, Nikkhah MJ, Naghavi MR, Baisakh N (2016) Population genetic structure of apple scab (Venturia inaequalis (Cooke) G. Winter) in Iran. PLoS ONE 11(9):e0160737

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans K, James C (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106(7):1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Feurtey A, Cornille A, Shykoff JA, Snirc A, Giraud T (2017) Crop-to-wild gene flow and its fitness consequences for a wild fruit tree: Towards a comprehensive conservation strategy of the wild apple in Europe. Evol Appl 10(2):180–188

    Article  PubMed  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143(9):1919–1927

    Article  Google Scholar 

  • Gao Y, Liu F, Wang K, Wang D, Gong X, Liu L, Richards CM, Henk AD, Volk GM (2015) Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources. Tree Genet Genom 11(5):106

    Article  Google Scholar 

  • Garrett KA, Dobson A, Kroschel J, Natarajan B, Orlandini S, Tonnang HE, Valdivia C (2013) The effects of climate variability and the color of weather time series on agricultural diseases and pests, and on decisions for their management. Agric For Meteorol 170(3):216–227

    Article  Google Scholar 

  • Gharaghani A, Solhjoo S, Oraguzie N (2016) A review of genetic resources of pome fruits in Iran. Genet Resour Crop Evol 63(1):151–172

    Article  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56(6):829–842

    Article  CAS  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Fattahi R, Hajnajari H, Oraguzie N, Wiedow C, Gardiner S (2010) The role of Iran (Persia) in apple (Malus × domestica Borkh.) domestication, evolution and migration via the silk trade route. In: international symposium on molecular markers in horticulture, vol 859, 2009, pp 229–236

  • Gladieux P, Zhang XG, Róldanruiz I, Caffier V, Leroy T, Devaux M, Van Glabeke S, Coart E, Le Cam B (2010) Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol Ecol 19(4):658–674

    Article  PubMed  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109(8):1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops. Springer, Berlin, p 3380

    Google Scholar 

  • Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90(4):912–920

    Article  PubMed  Google Scholar 

  • Hemmat M, Brown S, Aldwinckle H, Weeden N, Mehlenbacher S (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata# 2’. Acta Hortic 622:153–161

    Article  CAS  Google Scholar 

  • Hokanson S, Szewc-McFadden A, Lamboy W, McFerson J (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97(5):671–683

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  CAS  PubMed  Google Scholar 

  • James C, Clarke J, Evans K (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Genet 110(1):175–181

    Article  CAS  PubMed  Google Scholar 

  • Khoshbakht K, Hammer K (2006) Savadkouh (Iran)–an evolutionary centre for fruit trees and shrubs. Genet Resour Crop Evol 53(3):641–651

    Article  Google Scholar 

  • Larsen AS, Asmussen CB, Coart E, Olrik DC, Kjær ED (2006) Hybridization and genetic variation in Danish populations of European crab apple (Malus sylvestris). Tree Genet Genom 2(2):86–97

    Article  Google Scholar 

  • Leestmans R (2005) Le refuge caspiens et son importance en biogéographie. Linneana Belgica 20(3):97–102

    Google Scholar 

  • Lemaire C, De Gracia M, Leroy T, Michalecka M, Lindhard-Pedersen H, Guerin F, Gladieux P, Le Cam B (2016) Emergence of new virulent populations of apple scab from nonagricultural disease reservoirs. New Phytol 209(3):1220–1229

    Article  CAS  PubMed  Google Scholar 

  • Lenne JM, Wood D (1991) Plant diseases and the use of wild germplasm. Annu Rev Phytopathol 29(1):35–63

    Article  Google Scholar 

  • LeVan A, Gladieux P, Lemaire C, Cornille A, Giraud T, Durel CE, Caffier V, Le Cam B (2012) Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host. Evol Appl 5(7):694–704

    Article  Google Scholar 

  • Liang W, Dondini L, De Franceschi P, Paris R, Sansavini S, Tartarini S (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Report 33(3):458–473

    Article  CAS  Google Scholar 

  • Markussen T, Krüger J, Schmidt H, Dunemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breed 114(6):530–534

    Article  CAS  Google Scholar 

  • Migicovsky Z, Myles S (2017) Exploiting wild relatives for genomics-assisted breeding of perennial crops. Front Plant Sci 8:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittermeier RA, Myers N, Mittermeier CG, Robles G (1999) Hotspots: earth’s biologically richest and most endangered terrestrial ecoregions. CEMAX, S.A, Mexico City, p 430

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmesan C, Burrows MT, Duarte CM, Poloczanska ES, Richardson AJ, Schoeman DS, Singer MC (2013) Beyond climate change attribution in conservation and ecological research. Ecol Lett 16(1):58–71

    Article  PubMed  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theor Appl Genet 109(5):1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Patzak J, Paprštein F, Henychová A (2011) Identification of apple scab and powdery mildew resistance genes in Czech apple (Malus × domestica) genetic resources by PCR molecular markers. Czech J Genet Plant Breed 47(4):156–165

    Article  CAS  Google Scholar 

  • Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS ONE 9(2):e83844

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WW (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer A, Gonzalez-Diaz A, Diaz-Hernandez M (2008) Genetic assessment of local apple cultivars from La Palma, Spain, using simple sequence repeats (SSRs). Sci Hort 117(2):160–166

    Article  CAS  Google Scholar 

  • Pessina S, Angeli D, Martens S, Visser RG, Bai Y, Salamini F, Velasco R, Schouten HJ, Malnoy M (2016) The knock-down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica). Plant Biotechnol J 14(10):2033–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramezani E, Marvie Mohadjer MR, Knapp H-D, Ahmadi H, Joosten H (2008) The late-Holocene vegetation history of the Central Caspian (Hyrcanian) forests of northern Iran. The Holocene 18(2):307–321

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106

    Article  PubMed  Google Scholar 

  • Salamin N, Wüest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Trend Ecol Evol 25(12):692–698

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Savel’ev N, Lyzhin A, Savel’eva N (2016) Genetic diversity of genus Malus Mill. for scab resistance genes. Russ Agric Sci 42(5):310–313

    Article  Google Scholar 

  • Seglias N, Gessler C (1997) Genetics of apple powdery mildew resistance from Malus zumi (P/2). IOBC WPRS Bull 20:195–208

    Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118(2):183–186

    Article  Google Scholar 

  • Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genet Genoms 8(6):1163–1180

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4(3):535–538

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13(4):921–935

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus [times] domestica Borkh.). Nat Genet 42(10):833–839

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Richards CM, Reilley AA, Henk AD, Reeves PA, Forsline PL, Aldwinckle HS (2008) Genetic diversity and disease resistance of wild Malus orientalis from Turkey and Southern Russia. J Am Soc Hortic Sci 133(3):383–389

    Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley AA, Reeves PA, Forsline PL, Aldwinckle HS (2009) Capturing the diversity of wild Malus orientalis from Georgia, Armenia, Russia, and Turkey. J Am Soc Hortic Sci 134(4):453–459

    Google Scholar 

  • Volk GM, Henk AD, Baldo A, Fazio G, Chao CT, Richards CM (2015) Chloroplast heterogeneity and historical admixture within the genus Malus. Am J Bot 102(7):1198–1208

    Article  PubMed  Google Scholar 

  • Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int 86:14–23

    Article  PubMed  Google Scholar 

  • Yousefzadeh H, Colagar AH, Akbarzadeh F, Tippery NP (2014) Taxonomic status and genetic differentiation of Hyrcanian Castanea based on noncoding chloroplast DNA sequences data. Tree Genet Genom 10(6):1611–1629

    Article  Google Scholar 

  • Zohary M (1973) Geobotanical foundation of the Middle East. Gustav Fischer-Verlag. Stuttgart, Germany ASIN B0006CB7Z4

Download references

Acknowledgements

This research was funded by the Franco-Iranian GUNDISHAPUR exchange program (Campus France 2017), the Iran National Science Foundation (INSF, Grant Number : 92038087) and Tarbiat Modares University. We thank Vincent Bus for his helpful suggestions. We also thank Ali Khodadoust and Dr. Ehsan Abdi for their lab support and figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamed Yousefzadeh or Batool Hosseinpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirchakhmaghi, N., Yousefzadeh, H., Hosseinpour, B. et al. First insight into genetic diversity and population structure of the Caucasian wild apple (Malus orientalis Uglitzk.) in the Hyrcanian forest (Iran) and its resistance to apple scab and powdery mildew. Genet Resour Crop Evol 65, 1255–1268 (2018). https://doi.org/10.1007/s10722-018-0611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0611-z

Keywords

Navigation