Skip to main content
Log in

Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype–phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6 cM from CH05e03 and at 3.9 cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15 cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbieri M, Belfanti E, Tartarini S, Vinatzer BA, Sansavini S, Dilworth E, Gianfranceschi L, Hermann D, Patocchi A, Gessler C (2003) Progress of the map based cloning of the Vf-resistance gene and functional verification: preliminary results from expression studies in transformed apple. HortScience 38:1–3

    Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  CAS  PubMed  Google Scholar 

  • Bénaouf G, Parisi L (2000) Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    Google Scholar 

  • Cheng FS, Brown SK, Weeden NF, Aldwinckle HS (1995) Molecular markers for scab resistance from ‘Nova Easygro’ apple. In: Plant Genome III Conference (Abstract), San Diego, January 1995

  • Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41:208–214

    Article  CAS  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256

    Google Scholar 

  • Dayton DF, Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hort Sci 92:89–94

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes carry the Vf gene. Theor Appl Genet 93:485–493

    Article  CAS  Google Scholar 

  • Gessler C (1989) Genetics of the interaction Venturia inaequalisMalus: the conflict between theory and reality. In: Integrated control of pome fruit diseases II. IOBC-WPRS Bulletin, pp 168–190

    Google Scholar 

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    CAS  PubMed  Google Scholar 

  • Hemmat M, Brown SK, Weeden NF (2002) Tagging and mapping scab resistance genes from R12740-7A apple. J Am Soc Hort Sci 127:365–370

    CAS  Google Scholar 

  • Hemmat M, Brown SK, Aldwinckle HS, Weeden NF (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’. Acta Hort 622:153–161

    CAS  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding (1), tree and tropical fruits. Wiley, New York, pp 1–77

    Google Scholar 

  • Koller B, Gianfranceschi L, Seglias N, McDermott J, Gessler C (1994) DNA markers linked to Malus floribunda 821 scab resistance. Plant Mol Biol 26:597–602

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • MacHardy WE (1996) Inheritance of resistance to Venturia inaequalis. In: Apple scab, biology, epidemiology and management. APS, St. Paul, pp 61–103

  • MacHardy W, Gadoury DM, Gessler C (2001) Parasitic and biological fitness of Venturia inaequalis: relationship to disease management strategies. Plant Dis 85:1036–1051

    Google Scholar 

  • Melchinger AE (1990) Use of molecular markers in breeding for oligogenic disease resistance. Plant Breed 104:1–19

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017

    Article  CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang H-B, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple resistance gene Vf. Mol Gen Genet 262:884–891

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theor Appl Genet (in press). DOI 10.1007/s00122-004-1723-8

  • Rousselle GL, Williams EB, Hough LF (1974) Modification of the level of resistance to apple scab from the Vf gene. In: Proceedings of the XIX international horticulture congress III, Warszawa, 11–18 September 1974, pp 19–26

  • Seglias N (1997) Genetische Kartierung quantitativer Merkmale beim Apfel. Dissertation ETH Nr. 12204, Eidgenössische Technische Hochschule, Zürich

  • Stam P, van Ooijen JW (1995) JoinMap, version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen

    Google Scholar 

  • Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Theor Appl Genet 92:803–810

    Article  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H-B, Gessler C, Sansavini S (2001) Apple (Malus sp.) contains receptor-like genes homologous to the Cf resistance gene family of tomato with a cluster of such genes co-segregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    CAS  PubMed  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab resistant accessions in Malus germplasm. Plant Breed 123:321–326

    Article  Google Scholar 

  • Wolfe MS (1993) Can the strategic use of disease resistant hosts protect their inherent durability? In: Jacobs T, Parlevliet JE (eds) Durability of disease resistance. Kluwer, Dordrecht, pp 83–96

    Google Scholar 

  • Yang H, Krüger J (1994) Identification of a RAPD marker linked to the Vf gene for scab resistance in apples. Plant Breed 122:323–329

    Google Scholar 

Download references

Acknowledgements

We thank the Eve Silfverberg-Dilworth and Lynn Hallstein for critical reading of the manuscript, P. Forsline (NYS Agricultural Experiment Station Geneva, NY, USA), J. Janick (Purdue University, USA) and F. Laurens (INRA Angers, France) for providing plant leaf material and the Swiss Federal Office for Education and Science (OFES), grant no. AG010 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Patocchi.

Additional information

Communicated by H. Nybom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gygax, M., Gianfranceschi, L., Liebhard, R. et al. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109, 1702–1709 (2004). https://doi.org/10.1007/s00122-004-1803-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1803-9

Keywords

Navigation