Skip to main content
Log in

Association mapping of salinity and alkalinity tolerance in improved japonica rice (Oryza sativa L. subsp. japonica Kato) germplasm

  • Research Paper
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Salinity and alkalinity seriously threaten global rice production. As a consequence, elucidation of the genetic basis of salinity and alkalinity tolerance is crucial for rice breeding. To identify genetic marker loci/QTLs associated with salinity and alkalinity tolerance, we performed association mapping based on different statistical models using 347 rice accessions from all over the world. Salinity tolerance for all traits was evaluated on saline land along the seashore of Hebei, while alkalinity tolerance at the seedling stage was assessed in the alkaline soil of paddy fields in Jilin. A total of 148 SSRs were used for genotyping. Within the entire population, 64.1 % of SSR locus pairs were in significant linkage disequilibrium (LD) (P < 0.05). Most of this LD was due to the overall population structure, as the percentage of locus pairs in LD was much lower within each subpopulation, ranging from 21.2 to 32.4 %. LD decayed with genetic distance, indicating that linkage was a main cause of LD. Model comparisons indicated that the Q + K model, which controls for both population structure (Q) and relative kinship (K), performed better than other models. A total of 40 markers were identified: 25 related to salinity tolerance and 15 related to alkalinity tolerance. Of the identified markers, 17 were located either in or near regions in which QTLs for salinity and alkalinity tolerance have been previously reported. Furthermore, we identified three of these markers—RM475, RM567, and RM505—in rice under both salinity and alkalinity stress conditions. These results highlight target regions for fine mapping, cloning and molecular breeding by design for rice salinity and alkalinity tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bradbury PJ, Zhang ZW, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng HT, Jiang H, Xue DW, Guo LB, Zeng DL, Zhang GH, Qian Q (2008) Mapping of QTLs underlying tolerance to alkali at germination and early seedling stages in rice. Acta Agronomica Sinica 34:1719–1727

    Article  CAS  Google Scholar 

  • Cheng LR, Wang Y, Meng LJ, Hu X, Cui YR, Sun Y, Zhu L, Ali J, Xu J, Li Z (2012) Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice. Genome 55:45–55

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Xu CY, Tang CF, Yang CG, Yu TQ, Xin-xiang A, Cao GL, Xu FR, Zhang JG, Han LZ (2013) Genetic structure and association mapping of cold tolerance in improved japonica rice germplasm at the booting stage. Euphytica 193:369–382

    Article  CAS  Google Scholar 

  • Doyle JJ, Dickson EE (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715–722

    Article  Google Scholar 

  • Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenblad J, Nordborg M (2002) Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics 61:289–298

    Google Scholar 

  • Hall D, Tegstrom C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genom 9:157–165

    Article  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Deng LW, Li WJ, Lu YQ, Weng WJ, Liu KY, Huang T, Zhou JY, Jing YF, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li JY, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Salam MA, Hassan L, Collard BC, Singh RK, Gregorio GB (2011) QTL mapping for salinity tolerance at seedling stage in rice. Emir J Food Agric 23:137–146

    Article  Google Scholar 

  • Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487

    Article  PubMed  Google Scholar 

  • Jun TH, Van K, Kim MY, Lee SH, Walker DR (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179–191

    Article  CAS  Google Scholar 

  • Kader MA, Lindberg S (2008) Cellular traits for sodium tolerance in rice (Oryza sativa L.). Plant Biotechnol 25:247–255

    Article  CAS  Google Scholar 

  • Kim DM, Ju HG, Kwon TR, Oh CS, Ahn SN (2009) Mapping QTLs for salinity tolerance in an introgression line population between japonica cultivars in rice. J Crop Sci Biotechnol 12:121–128

    Article  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46

    Article  Google Scholar 

  • Li XB, Yan WG, Agrama HA, Jia LM, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu DX (2012) Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS One 7:e29350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2:48–62

    Article  CAS  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi DL, Guo GZ, Lee MC, Zhang JG, Cao GL, Zhang SY, Suh SC, Zhou QY, Han LZ (2008) Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice. J Genet Genomics 35:299–305

    Article  PubMed  Google Scholar 

  • Qi DL, Guo GZ, Lee MC, Yang CG, Zhang JG, Cao GL, Zhang SY, Suh SC, Zhou QY, Han LZ (2009) Identification of quantitative trait loci for alkaline tolerance at early seedling stage under alkaline stress in japonica rice. Acta Agronomica Sinica 35:301–308

    CAS  Google Scholar 

  • Thomson MJ, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Wen W, Mei H, Feng F, Yu S, Huang Z, Wu J, Chen L, Xu X, Luo L (2009) Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet 119:459–470

    Article  PubMed  Google Scholar 

  • Whitt SR, Buckler ES (2003) Using natural allelic diversity to evaluate gene function. Methods Mol Biol 236:123–139

    CAS  PubMed  Google Scholar 

  • Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene associations. Plant Cell 16:2719–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan JB, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yang XH, Yan JB, Shah T, Warburton ML, Li Q, Li L, Gao YF, Chai YC, Fu ZY, Zhou Y, Xu ST, Bai GH, Meng YJ, Zheng YP, Li JS (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    Article  PubMed  Google Scholar 

  • Yao MZ, Wang JF, Chen HY, Zhai HQ, Zhang HS (2005) Inheritance and QTL mapping of salt tolerance in rice. Rice Sci 12:25–32

    Google Scholar 

  • Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:1–6

    Article  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Li JQ, Li XL, Liu XD, Zhao XJ, Lu YG (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6:e27565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, VanTassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregun PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 63:1123–1134

    Google Scholar 

  • Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Chinese National Germplasm Bank for providing the improved japonica rice seeds. This work was supported by the National Key Technology Research and Development Program of China (2013BAD01B02-2), the Project of 973 (2010CB125904-5), Science and Technology Innovation Project of CAAS and The platform of National Crop Germplasm Resources, the Protective Program of Crop Germplasm of China (NB2013-2130135-25-01), the Basic Work Project of the Ministry of Science and Technology (2007FY110500-12), International Cooperation Project (PJ008685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-zhi Han.

Additional information

Di Cui and Chang-ying Xu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, D., Xu, Cy., Yang, Cg. et al. Association mapping of salinity and alkalinity tolerance in improved japonica rice (Oryza sativa L. subsp. japonica Kato) germplasm. Genet Resour Crop Evol 62, 539–550 (2015). https://doi.org/10.1007/s10722-014-0179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0179-1

Keywords

Navigation