Skip to main content
Log in

Karyotypic studies in wild germplasm of Arachis (Leguminosae)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The karyomorphology for eight diploid species of Arachis belonging to three sections has been described for the first time, Sect. Extranervosae: A. macedoi (2n = 20m) and A. retusa (2n = 14m + 6sm); Sect. Heteranthae: A. sylvestris (2n = 16m + 4sm); Sect. Procumbentes: A. chiquitana (2n = 18m + 2sm); Sect. Arachis: A. cruziana (2n = 18m + 2sm), A. herzogii (2n = 18m + 2sm), A. simpsonii (2n = 20m) and A. williamsii (2n = 20m). A pair of satellited chromosomes was observed in all species. A chromosomes were found in A. chiquitana, A. herzogii and A. simpsonii. Karyotypic differences between sections were observed, but not enough to establish a characteristic karyotype pattern for each section. However, the species may be differentiated by the presence of A chromosomes, the type and position of satellites, and the karyotype formulae. These results are discussed with regard to karyotype evolution in Arachis to contribute to understanding the role of chromosome changes in the evolution of the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brandham PE, Doherty MJ (1998) Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot (Lond) 82:67–73. doi:10.1006/anbo.1998.0742

    Article  Google Scholar 

  • Cao W (2003) Cytogenetic and molecular genetic evidence on evolution of genus Triticum. In: Sharma AK, Sharma A (eds) Plant genome. Biodiversity and evolution. vol 1A: Phanerogam—Angiosperm. Science Publishers, Enfield (NH), USA, pp 223–247

    Google Scholar 

  • Custodio AR, Peñaloza APS, Valls JFM (2005) Further cytogenetic information on Arachis stenosperma (Leguminosae). Cytologia (Tokyo) 70:331–335. doi:10.1508/cytologia.70.331

    Google Scholar 

  • Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187–220

    Google Scholar 

  • Holbrook CC, Stalker HT (2003) Peanut breeding and genetic resources. In: Janick J (ed) Plant breeding reviews, vol 22. Wiley, Hoboken, pp 297–356

  • Husted L (1933) Cytological studies on the peanut, Arachis. I. Chromosome number and morphology. Cytologia (Tokyo) 5:109–117

    Google Scholar 

  • InfoStat (2008) InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Jauhar PP (2006) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1859. doi:10.2135/cropsci2005.07-0223

    Article  CAS  Google Scholar 

  • Jones K (1970) Chromosome changes in plant evolution. Taxon 19:172–179. doi:10.2307/1217950

    Article  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Lavia GI (1996) Estudios cromosómicos en Arachis (Leguminosae). Bonplandia 9:111–120

    Google Scholar 

  • Lavia GI (1998) Karyotypes of Arachis palustris and A. praecox (section Arachis), two species with basic chromosome number x = 9. Cytologia (Tokyo) 63:177–181

    Google Scholar 

  • Lavia GI (2000) Chromosome studies in wild Arachis (Leguminosae). Caryologia 53:277–281

    Google Scholar 

  • Lavia GI (2001) Chromosomal characterization of germplasm of wild species of Arachis L. belonging to sections Trierectoides, Erectoides and Procumbentes. Caryologia 54:115–119

    Google Scholar 

  • Lavia GI, Fernández A (2004) Karyotypic studies in Arachis hypogaea L. varieties. Caryologia 57:353–359

    Google Scholar 

  • Lavia GI, Fernández A (2008) Genome size in wild and cultivated peanut germplasm. Plant Syst Evol 272:1–10. doi:10.1007/s00606-007-0632-0

    Article  CAS  Google Scholar 

  • Lavia GI, Fernández A, Seijo JG (2008) Cytogenetic and molecular evidences on the evolutionary relationships among Arachis species. In: Sharma AK, Sharma A (eds) Plant genome. Biodiversity and evolution. vol 1E: Phanerogam—Angiosperm. Science Publishers, Calcutta, Kolkata, India, pp 101–134

    Google Scholar 

  • Lima de Faría A (1980) Classification of genes, rearrangements and chromosomes according to the field. Hereditas 93:1–46

    PubMed  Google Scholar 

  • Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. Plant Syst Evol 249:139–149. doi:10.1007/s00606-004-0191-6

    Article  Google Scholar 

  • Mercado-Ruaro P, Delgado-Salinas A (1998) Karyotypic studies on species of Phaseolus (Fabaceae: Phaseolinae). Am J Bot 85:1–9. doi:10.2307/2446547

    Article  Google Scholar 

  • Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11. http://www.biomedcentral.com/1471-2229/4/11. doi:10.1186/1471-2229-4-11

    Google Scholar 

  • Peñaloza APS, Valls JFM (2005) Chromosome number and satellited chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 15:65–72

    Google Scholar 

  • Peñaloza APS, Pozzobon MT, Valls JFM (1996) Cytogenetic findings in wild species of Arachis (Leguminosae). Proceedings of the 42nd Congresso Nacional de Genética, Caxambu, Brasil 42:42

  • Poggio L, González G, Naranjo CA (2007) Chromosome studies in Hippeastrum (Amaryllidaceae): variation in genome size. Bot J Linn Soc 155:171–178. doi:10.1111/j.1095-8339.2007.00645.x

    Article  Google Scholar 

  • Robledo G, Seijo GJ (2008) Characterization of Arachis D genome by FISH chromosome markers and total genome DNA hybridization. Genet Mol Biol 31:717–724

    Article  CAS  Google Scholar 

  • Rohlf FJ (1994) NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 1.8. Exeter Software, New York, USA

    Google Scholar 

  • Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530. doi:10.2307/1221906

    Article  Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115. doi:10.1016/j.pbi.2007.01.001

    Article  PubMed  CAS  Google Scholar 

  • Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Am J Bot 90:980–987. doi:10.3732/ajb.90.7.980

    Article  Google Scholar 

  • Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of 5S and 18S-25S rRNA genes evidences that Arachis duranensis and A. ipaensis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot 91:2293–2303. doi:10.3732/ajb.91.9.1294

    Article  Google Scholar 

  • Singh AK, Moss JP (1984) Utilization of wild relative in genetic improvement of Arachis hypogaea L. Theor Appl Genet 68:355–364. doi:10.1007/BF00267889

    Article  Google Scholar 

  • Singh KP, Raina SN, Singh AK (1996) Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39:890–897. doi:10.1139/g96-112

    Article  PubMed  CAS  Google Scholar 

  • Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675. doi:10.1007/BF00023701

    Article  Google Scholar 

  • Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78:630–637. doi:10.2307/2445084

    Article  Google Scholar 

  • Stalker HT, Dhesi JS, Parry DC, Hahn JH (1991) Cytological and interfertility relationships of Arachis section Arachis. Am J Bot 78:238–246. doi:10.2307/2445247

    Article  Google Scholar 

  • Stalker HT, Philips TD, Murphy JP, Jones TM (1994) Variation of isozyme patterns among Arachis species. Theor Appl Genet 87:746–755. doi:10.1007/BF00222901

    Article  CAS  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237. doi:10.1007/s00122-005-0017-0

    Article  PubMed  CAS  Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–64

    Google Scholar 

  • White MJD (1965) Principles of karyotype evolution in animals. In: Genetics Today. Proceedings of the XI international congress of genetics, The Hague, 1963, 391–397

Download references

Acknowledgements

We thank J.F.M. Valls (CENARGEN-EMBRAPA) and C.E. Simpson (Texas Experiment Agricultural Station, TX, USA) for their courtesy in sending the seeds. This work was supported by grants from CONICET and Secretaría General de Ciencia y Técnica de la UNNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela I. Lavia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavia, G.I., Ortiz, A.M. & Fernández, A. Karyotypic studies in wild germplasm of Arachis (Leguminosae). Genet Resour Crop Evol 56, 755–764 (2009). https://doi.org/10.1007/s10722-008-9399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9399-6

Keywords

Navigation