Skip to main content
Log in

Genome size in wild and cultivated peanut germplasm

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Summary

Genome size of 16 species of Arachis L. with x = 10 and three with x = 9 was determined. DNA content (2C) between all diploid species, varies from 2.87 pg in A. retusa to 6.59 pg in A. douradiana. Considering species with 2n = 2x = 20 of all the sections, it suggests that in the evolution of Arachis genome, both increases and diminutions of DNA content would have occurred. Species with greater DNA content are included in sections believed to have a more recent origin, whereas those that contain minor DNA belong to the oldest sections; therefore, we propose genome evolution of Arachis toward higher DNA content. Origin of the basic chromosome number x = 9 is discussed considering genome size variation between species with x = 10 and x = 9. Reduction of the DNA content after the polyploidization would have happened in A. hypogaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett MD (1982) Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation. In: Dover GA, Flavel RB (eds) Genome evolution. New York, pp 239–261

  • Bennett MD (2000). Nuclear DNA amounts in angiosperms and their modern uses-807 new estimates. Ann Bot 86: 859–909

    Article  CAS  Google Scholar 

  • Bennetzen JL and Kellogg EA (1997). Do plants have a one way ticket to genomic obesity?. Pl Cell 9: 1509–1514

    CAS  Google Scholar 

  • Brandham PE and Doherty MJ (1998). Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot 82: 67–74

    Article  Google Scholar 

  • Fernández A and Krapovickas A (1994). Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8: 187–220

    Google Scholar 

  • Greilhuber J and Ehrendorfer F (1988). Karyological approaches to plant taxonomy. ISI Atlas Sci Pl Anim 1: 289–297

    Google Scholar 

  • Jackson RC (1971). The karyotype in systematics. Annual Rev Ecol Syst 2: 327–368

    Article  Google Scholar 

  • Kochert G, Halward T, Branch WD and Simpson CE (1991). RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81: 565–570

    Article  CAS  Google Scholar 

  • Krapovickas A (1973) Evolution of the genus Arachis. In: Moav R (ed) Agricultural genetics. Selected topics. Jerusalem, pp 135–151

  • Krapovickas A and Gregory WC (1994). Taxonomía del género Arachis (Leguminosae). Bonplandia 8: 1–186

    Google Scholar 

  • Lavia GI (1996). Estudios cromosómicos en Arachis (Leguminosae). Bonplandia 9: 111–120

    Google Scholar 

  • Lavia GI (1998). Karyotypes of Arachis palustris and A. praecox (section Arachis), two species with basic chromosome number x = 9. Cytologia 63: 177–181

    Google Scholar 

  • Lavia GI (1999). Caracterización cromosómica del germplasma de maní. Tesis Doctoral. Universidad Nacional de Córdoba, Córdoba, Argatina

    Google Scholar 

  • Lavia GI (2001). Chromosomal characterization of germplasm of wild species of Arachis L. belonging to sections Trierectoides, Erectoides and Procumbentes. Caryologia 54: 115–119

    Google Scholar 

  • Lavia GI and Fernández A (2004). Karyotypic studies in Arachis hypogaea L. varieties. Caryologia 57: 353–359

    Google Scholar 

  • Leitch IJ, Chase MW and Bennett MD (1998). Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82: 85–94

    Article  CAS  Google Scholar 

  • Lewis WH (1980) Polyploidy in species populations. In: Lewis WH (ed) Polyploidy, biological relevance. New York, pp 103–144

  • Liu B, Vega JM, Segal G, Abbo S, Rodova M and Feldman M (1998). Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low copy noncoding DNA sequences. Genome 41: 272–277

    Article  CAS  Google Scholar 

  • Martel E, De Nay D, Siljak-Yakovlev S, Brown S and Sarr A (1997). Genome size variation and basic chromosome number in pearl millet and fourteen related Pennisetum species. J Heredity 88: 139–143

    Google Scholar 

  • Martínez A and Ginzo HD (1985). DNA content in Tradescantia. Canad J Genet Cytol 27: 766–775

    Google Scholar 

  • Matzke MA and Matzke AJM (1998). Polyploidy and transposons. Trends Ecol Evol 13: 241

    Article  Google Scholar 

  • Narayan RKJ (1998). The role of genomic constraints upon evolutionary changes in genome size and chromosome organization. Ann Bot 82: 57–66

    Article  Google Scholar 

  • Peñaloza AP, Pozzobon MT, Valls JFM (1996) Cytogenetic findings in wild species of Arachis (Leguminosae). Programs and Abstracts of the National Congress of Genetics, Sociedade Brasilei- ra de Genética (ed) Caxambu, vol 46, p 129

  • Peñaloza APS and Valls JFM (2005). Chromosome number and satellited chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 15: 65–72

    Google Scholar 

  • Poggio L, Wulff AF and Hunziquer JH (1986). Chromosome size, nuclear volume and DNA content in Bulnesia (Zygophyllaceae). Darwiniana 27: 25–38

    Google Scholar 

  • Price HJ (1976). Evolution of DNA content in higher plants. Bot Rev 42: 27–52

    Article  CAS  Google Scholar 

  • Price HJ (1988). DNA content variation among higher plants. Ann Missouri Bot Gard 75: 1248–1257

    Article  Google Scholar 

  • Rees H (1984) Nuclear DNA variation and the homology of chromosomes. In: Grant WF (ed) Plant biosystematics. Toronal, pp 87–96

  • Resslar PM, Stucky JM and Miksche JP (1981). Cytophometric determination of the amount of DNA in Arachis (Leguminosae). Amer J Bot 68: 149–153

    Article  CAS  Google Scholar 

  • Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D and Moscone EA (2004). Physical mapping of 5S and 18S-25S rRNA genes evidences that Arachis duranensis and A. ipaensis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Amer J Bot 91: 1293–1303

    Article  Google Scholar 

  • Singh KP, Raina SN and Singh AK (1996). Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39: 890–897

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Bennett MD and Leitch IJ (2003). Evolution of genome size in the angiosperms. Amer J Bot 90: 1596–1603

    Article  Google Scholar 

  • Stebbins GL (1971). Chromosomal evolution in higher plants. Edward Arnold Publ Ltd, London

    Google Scholar 

  • Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT and Quandt D (2005). Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111: 1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Temsch EM and Greilhuber J (2000). Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43: 449–451

    Article  PubMed  CAS  Google Scholar 

  • Thomas CA (1971). The genetic organization of chromosomes. Annu Rev Genet 5: 237–256

    Article  PubMed  CAS  Google Scholar 

  • Valls JFM and Simpson CE (2005). New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14: 35–64

    Google Scholar 

  • Vilhar B, Greilhuber J, Koce D, Temsch EM and Dermastia M (2001). Plant genome size measurement with DNA image cytometry. Ann Bot 87: 719–728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lavia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavia, G.I., Fernández, A. Genome size in wild and cultivated peanut germplasm. Plant Syst Evol 272, 1–10 (2008). https://doi.org/10.1007/s00606-007-0632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0632-0

Keywords

Navigation