Skip to main content

Advertisement

Log in

Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The swim bladder of fish is an internal gas-filled organ that allows fish to control their buoyancy and swimming depth. Fish maws (the dried swim bladders of fish) have been used over many centuries as traditional medicines, tonics and a luxurious gourmet food in China and Southeast Asia. Little is known about the structural information of polysaccharides comprising this important functional material of fish tissue. In the present study, the total glycosaminoglycan (GAG) from fish maw was characterized. Two GAGs were identified, chondroitin sulfate (CS, having a molecular weight of 18–40 kDa) and heparan sulfate (HS), corresponding to 95% and 5% of the total GAG, respectively. Chondroitinase digestion showed that the major CS GAG was composed of ΔUA-1 → 3-GalNAc4S (59.7%), ΔUA-1 → 3-GalNAc4,6S (36.5%), ΔUA-1 → 3-GalNAc6S (2.2%) and ΔUA-1 → 3-GalNAc (1.6%) disaccharide units. 1H–NMR analysis and degradation with specific chondroitinases, both CS-type A/C and CS-type B were present in a ratio of 1.4:1. Analysis using surface plasmon resonance showed that fibroblast growth factor (FGF)-2 bound to the CS fraction (KD = 136 nM). These results suggest that this CS may be involved in FGF-signal pathway, mediating tissue repair, regeneration and wound healing. The CS, as the major GAG in fish maw, may have potential pharmacological activity in accelerating wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ac:

acetyl

AMAC:

2-aminoacridone

CS:

chondroitin sulfate

ΔUA:

4-deoxy-β-L-threo-hex-4-enopyranosiduronic acid

DMMB:

1,9-dimethylmethylene blue

ESI:

electrospray ionization;

FGF:

fibroblast growth factor

GAG:

glycosaminoglycan

GalN:

galactosamine

GlcA:

glucuronic acid

GlcN:

glucosamine

GPC:

gel permeation chromatography

HPLC:

high performance liquid chromatography

HS:

heparan sulfate

IdoA:

iduronic acid

KS:

keratan sulfate

MS:

mass spectrometry

MWCO:

molecular weight cut-off

NMR:

nuclear magnetic resonance

PAGE:

polyacrylamide gel electrophoresis

RU:

resonance units

S:

sulfo

SEC:

size exclusion chromatography

SPR:

surface plasmon resonance

USP:

United States Pharmacopeia

References

  1. Clarke, S.C.: Understanding pressures onfishery resources through trade statistics: a pilot study of four products in the Chinese dried seafood market. Fish Fish. 5, 53–74 (2004)

    Article  Google Scholar 

  2. Lin, S.Y.: Fish air-bladders of commercial value in China. The Hong Kong Naturalist. 9, 108–118 (1939)

    Google Scholar 

  3. Sadovy, Y., Cheung, W.L.: Near extinction of a highly fecundfish: the one that nearly got away. Fish Fish. 4, 86–99 (2003)

    Article  Google Scholar 

  4. Jian, J.C., ZH, W.: Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena Crocea (Richardson). Aquaculture. 218, 1–9 (2003)

    Article  Google Scholar 

  5. Li, C., Yao, C.L.: Molecular and expression characterizations of interleukin-8 gene in large yellow croaker (Larimichthys crocea). Fish. Shellfish. Immunol. 34, 799–809 (2013)

    Article  PubMed  Google Scholar 

  6. Li, G.J., et al.: Preventive effect of polysaccharide of Larimichthys Crocea swimming bladder on activated carbon-induced constipation in mice. J Korean Soc Appl Biol Chem. 57(2), 167–172 (2013)

    Article  Google Scholar 

  7. Jiang, X., et al.: Therapeutic effect of polysaccharide of large yellow croaker swim bladder on lupus nephritis of mice. Nutrients. 6(3), 1223–1235 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen, S., et al.: Preventive effect of polysaccharides from the large yellow croaker swim bladder on HCl/ethanol induced gastric injury in mice. Exp. Ther. Med. 8(1), 316–322 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Capila, I., Linhardt, R.J.: Heparin-Protein Interactions. AngewandteChemie Int. Ed. 41, 390–412 (2002)

    Article  CAS  Google Scholar 

  10. Pomin, V.H., Mulloy, B.: Current structural biology of the heparin interactome. Curr. Opin. Struct. Biol. 34, 17–25 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Munoz, E.M., Linhardt, R.J.: Heparin-binding domains in vascular biology. Arterioscler. Thromb. Vasc. Biol. 24, 1549–1557 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belting, M.: Glycosaminoglycans in cancer treatment. Thromb. Res. 133(Suppl2), 95–101 (2014)

    Article  Google Scholar 

  13. Sterner, E., et al.: FGF-FGFR signaling mediated through glycosaminoglycans in microfile plate and cell-based microarray assays. Biochemistry. 52, 9–19 (2013)

    Article  Google Scholar 

  14. Kamhi, E., Joo, E.J., Dordick, J.S., Linhardt, R.J.: Glycosaminoglycans in infectious disease. Biol. Rev. 88, 928–943 (2013)

    Article  PubMed  Google Scholar 

  15. Shute, J.: Glycosaminoglycan and chemokine/growth factor interactions. Handb. Exp. Pharmacol. 207, 307–324 (2012)

    Article  CAS  Google Scholar 

  16. Linhardt, R.J.: Claude S Hudson award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 46(13), 2551–2564 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Yamada, S., Sugahara, K.: Potential therapeutic application of chondroitin sulfate/ dermatan sulfate. Curr. Drug Disc. Technol. 5, 289–301 (2008)

    Article  CAS  Google Scholar 

  18. Goldberg, V.M., Buckwalter, J.A.: Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthr. Cartil. 13, 216–224 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Vázquez, J.A., Rodríguez-Amado, I., Montemayor, M., Fraguas, J., González, M.P., Murado, M.A.: Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar. Drugs. 11, 747–774 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sasisekharan, R., Bulmer, M., Moremen, K.W., Cooney, C.L., Langer, R.: Cloning and expression of heparinase I gene from Flavobacterium heparinum. Proc. Natl. Acad. Sci. U. S. A. 1993(90), 3660–3664 (1993)

    Article  Google Scholar 

  21. Williams, A., He, W., Cress, B.F., Liu, X., Alexandria, J., Yoshizawa, H., Nishimura, K., Toida, T., Koffas, M., Linhardt, R.J.: Cloning and expression of recombinant chondroitinase AC II and its comparison to the Arthrobacter aurescens enzyme. Biotechnol. J. (2017). https://doi.org/10.1002/biot.201700239

  22. Bitter, T., Muir, H.M.: A modiWed uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962)

    Article  CAS  PubMed  Google Scholar 

  23. Yang, B., Chang, Y., Weyers, A.M., Sterner, E., Linhardt, R.J.: Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry. J Chromatogr A. 1225, 91–98 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Z., Masuko, S., Solakyildirim, K., Pu, D., Linhardt, R.J., Zhang, F.: Glycosaminoglycans of the porcine central nervous system. Biochemistry. 49, 9839–9847 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Im, A.R., Kim, J.Y., Kim, H.S., Cho, S., Park, Y., Kim, Y.S.: Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Nanotechnology. (2013). https://doi.org/10.1088/0957-4484/24/39/395102

  26. Zou, X.H., Foong, W.C., Cao, T., Bay, B.H., Ouyang, H.W., Yip, G.W.: Chondroitin sulfate in palatal wound healing. J. Dent. Res. 83, 880–885 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Shi, H.X., Lin, C., Lin, B.B., Wang, Z.G., Zhang, H.Y., FZ, W., Cheng, Y., Xiang, L.J., Guo, D.J., Luo, X., Zhang, G.Y., XB, F., Bellusci, S., Li, X.K., Xiao, J.: The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS One. 8, e59966 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants HL125371, GM38060, HL096972, HL062244 and HL136271.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peipei Wang, Fuming Zhang or Robert J. Linhardt.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wang, P., Zhang, F. et al. Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential. Glycoconj J 35, 87–94 (2018). https://doi.org/10.1007/s10719-017-9804-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-017-9804-5

Keywords

Navigation