Skip to main content

Glycosaminoglycan and Chemokine/Growth Factor Interactions

  • Chapter
  • First Online:
Heparin - A Century of Progress

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 207))

Abstract

Heparin and glycosaminoglycans (GAGs) related structurally to heparin, notably heparan sulphate, bind to most, if not all, chemokines and many growth factors. The chemokine and growth factor interactions with GAGs localise the peptide mediators to specific sites in tissues and influence their stability and function. This chapter discusses the nature of these interactions and the effect on the function of a number of chemokines (PF-4, interleukin-8, RANTES and SDF-1) and growth factors (FGF, HGF, VEGF) in normal physiology and the disease setting. Novel therapeutic interventions that target chemokine and growth factor interactions with GAGs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulou AN, Multhaupt HAB, Couchman JR (2007) Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 39:505–528

    Article  PubMed  CAS  Google Scholar 

  • Bedke J, Nelson PJ, Kiss E et al (2010) A novel CXCL8 protein-based antagonist in acute experimental renal allograft damage. Mol Immunol 47(5):1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  PubMed  CAS  Google Scholar 

  • Belpeiro JA, Keane MP, Arenberg DA et al (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    Google Scholar 

  • Birchmeier C, Birchmeier W, Gheradi E, van de Woude GF (2003) MET, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Brandner B, Rek A, Diedrichs-Mohring M et al (2009) Engineering the glycosaminoglycan-binding affinity, kinetics and oligomerization behaviour of RANTES: a tool for generating chemokine-based glycosaminoglycan antagonists. Prot Eng Des Select 22:367–373

    Article  CAS  Google Scholar 

  • Brandt E, Ludwig A, Petersen F, Flad H-D (2000) Platelet-derived CXC chemokines: old players in new games. Immunol Rev 177:204–216

    Article  PubMed  CAS  Google Scholar 

  • Capila I, Linhardt RJ (2002) Heparin-protein interaction. Angew Chem Int Ed Engl 41:390–412

    Article  CAS  Google Scholar 

  • Catlow KR, Deakin JA, Wei Z et al (2008) Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulphate density. J Biol Chem 283:5235–5248

    Article  PubMed  CAS  Google Scholar 

  • Charnaux N, Brule S, Hamon M et al (2005) Syndecan-4 is a signalling molecule for stromal cell-derived factor-1 (SDF-1)/CXCL12. FEBS J 272:1937–1951

    Article  PubMed  CAS  Google Scholar 

  • Charni F, Friand V, Haddad O et al (2009) Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells. Biochim Biophys Acta 1790:1314–1326

    Article  PubMed  CAS  Google Scholar 

  • Colditz IG, Schneider MA, Pruenster M, Rot A (2007) Chemokines at large: in-vivo mechanisms of their transport, presentation and clearance. Thromb Haemost 97:688–693

    PubMed  CAS  Google Scholar 

  • De Larco JE, Wuertz BRK, Furcht LT (2004) The potential role of neutrophils in promoting the metastatic phenotype of tumours releasing interleukin-8. Clin Cancer Res 10:4895–4900

    Article  PubMed  Google Scholar 

  • de Paz JL, Moseman EA, Noti C et al (2007) Profiling heparan-chemokine interactions using synthetic tools. ACS Chem Biol 2:735–744

    Article  PubMed  Google Scholar 

  • Ferro V, Dredge K, Liu L et al (2007) PI-88 and novel heparan sulphate mimetics inhibit angiogenesis. Semin Thromb Hemost 33:557–568

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Liu L, Banwell MG et al (2005) Use of sulphated linked cyclitols as heparan sulphate mimetics to probe the heparin/heparan sulphate binding specificity of proteins. J Biol Chem 280:8842–8849

    Article  PubMed  CAS  Google Scholar 

  • Frevert CW, Kinsella MG, Vathanaprida C et al (2003) Binding of interleukin-8 to heparan sulfate and chondroitin sulfate in lung tissue. Am J Respir Cell Mol Biol 28:464–472

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JT (2006) Multiprotein signalling complexes: regional assembly on heparan sulphate. Biochem Soc Trans 34:438–441

    Article  PubMed  CAS  Google Scholar 

  • Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482

    Article  PubMed  CAS  Google Scholar 

  • Gleissner CA, von Hundelhausen P, Ley K (2008) Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 28:1920–1927

    Article  PubMed  CAS  Google Scholar 

  • Goodger SJ, Robinson CJ, Murphy KJ et al (2008) Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J Biol Chem 283:13001–13008

    Article  PubMed  CAS  Google Scholar 

  • Greinacher A (2009) Heparin-induced thrombocytopenia. J Thromb Haemost 7:9–12

    Article  PubMed  CAS  Google Scholar 

  • Halden Y, Rek A, Atzenhofer W et al (2004) Interleukin-8 binds to syndecan-2 on human endothelial cells. Biochem J 377:533–538

    Article  PubMed  CAS  Google Scholar 

  • Handel TM, Johnson Z, Crown SE et al (2005) Regulation of protein function by glycosaminoglycans – as exmplified by chemokines. Annu Rev Biochem 74:385–410

    Article  PubMed  CAS  Google Scholar 

  • Harmer NJ (2006) Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochem Soc Trans 34:442–445

    Article  PubMed  CAS  Google Scholar 

  • Hoogewerf AJ, Kushert GSV, Proudfoot AEI et al (1997) Glycosaminoglycans mediate cell surface oligomerisation of chemokines. Biochemistry 36:13570–13578

    Article  PubMed  CAS  Google Scholar 

  • Johnson Z, Kosco-Vilbois MH, Herren S et al (2004) Interference with heparin binding and oligomerisation creates a novel anti-inflammatory strategy targeting the chemokine system. J Immunol 173:5776–5785

    PubMed  CAS  Google Scholar 

  • Joung YK, Bae JW, Park KD (2008) Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin Drug Deliv 5:1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Wang H, Kainulainen V et al (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4:691–697

    Article  PubMed  CAS  Google Scholar 

  • Khachigian LM, Parish CR (2004) Phosphomannopentaose sulphate (PI-88): heparan sulphate mimetic with clinical potential in multiple vascular pathologies. Cardiovasc Drug Rev 22:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kreuger J, Spillman D, Li J-P, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327

    Article  PubMed  CAS  Google Scholar 

  • Kuschert GS, Hoogewerf AJ, Proudfoot AE et al (1998) Identification of a glycosaminoglycan binding surface on human interleukin-8. Biochemistry 37:11193–11201

    Article  PubMed  CAS  Google Scholar 

  • Kuschert GSV, Coulin F, Power CA et al (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38:12959–12968

    Article  PubMed  CAS  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646

    Article  PubMed  CAS  Google Scholar 

  • Lortat-Jacob H (2009) The molecular basis and functional implications of chemokine interactions with heparan sulphate. Curr Opin Struct Biol 19:543–548

    Article  PubMed  CAS  Google Scholar 

  • Lortat-Jacob H, Grosdidier A, Imberty A (2002) Structural diversity of heparan sulphate binding domains in chemokines. Proc Natl Acad Sci USA 99:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Malavaki C, Mizumoto N, Karamanos N, Sugahara K (2008) Recent advances in the structural study of functional chondroitin and dermatan sulphate in health and disease. Conn Tiss Res 49:133–139

    Article  CAS  Google Scholar 

  • Marshall LJ, Ramdin LS, Brooks T et al (2003) Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. J Immunol 171:2057–65

    PubMed  CAS  Google Scholar 

  • Martin L, Blanpain C, Garnier P et al (2001) Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry 40:6303–6318

    Article  PubMed  CAS  Google Scholar 

  • Masouleh BK, Ten Dam GB, Wild MK et al (2009) Role of heparan sulphate proteoglycan syndecan-1 (CD138) in delayed type hypersensitivity. J Immunol 182:4985–4993

    Article  CAS  Google Scholar 

  • Mikhailov D, Young HC, Linhardt RJ, Mayo KH (1999) Heparin dodecasaccaride binding to platelet factor-4 and growth-related protein-alpha. Induction of a partially folded state and implications for heparin-induced thrombocytopenia. J Biol Chem 274:25317–25329

    Article  PubMed  CAS  Google Scholar 

  • Murphy JW, Cho Y, Sachpatzidis A et al (2007) Structural and functional basis of CXCL12 (stromal cell-derived factor-1 alpha) binding to heparin. J Biol Chem 282:10018–10027

    Article  PubMed  CAS  Google Scholar 

  • Nickel W (2007) Unconventional secretion: an extracellular trap for export of fibroblast growth factor 2. J Cell Sci 120:2295–2299

    Article  PubMed  CAS  Google Scholar 

  • Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6:633–643

    Article  PubMed  CAS  Google Scholar 

  • Patterson AM, Gardner L, Shaw J et al (2005) Induction of a CXCL8 binding site on endothelial syndecan-3 in rheumatoid synovium. Arthritis Rheum 52:2331–2342

    Article  PubMed  CAS  Google Scholar 

  • Poncz M (2005) Mechanistic basis of heparin-induced thrombocytopenia. Semin Thorac Cardiovasc Surg 17:73–79

    Article  PubMed  Google Scholar 

  • Proudfoot AE, Fritchley S, Borlat F et al (2001) The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem 276:10620–10626

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot AE, Handel TM, Johnson Z et al (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 100:1885–1890

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot AEI, de Souza ALS, Muzio V (2008) The use of chemokine antagonists in EAE models. J Neuroimmunol 198:27–30

    Article  PubMed  CAS  Google Scholar 

  • Rajarathnam K, Sykes BD, Kay CM et al (1994) Neutrophil activation by monomeric interleukin-8. Science 264:90–92

    Article  PubMed  CAS  Google Scholar 

  • Ramdin L, Perks B, Sheron N, Shute JK (1997) Regulation of interleukin-8 binding and function by heparin and alpha2-macroglobulin. Clin Exp Allergy 28:616–624

    Article  Google Scholar 

  • Rek A, Brandner B, Geretti E, Kungl AJ (2009a) A biophysical insight into the RANTES-glycoaminoglycan interaction. Biochim Biophys Acta 1794:577–582

    PubMed  CAS  Google Scholar 

  • Rek A, Krenn E, Kungl AJ (2009b) Therapeutically targeting protein-glycan interactions. Br J Pharmacol 157:686–694

    Article  PubMed  CAS  Google Scholar 

  • Robinson CJ, Mulloy B, Gallagher JT, Stringer SE (2006) VEGF165-binding sites within heparan sulphate encompass two highly sulphated domains and can be liberated by K5 lyase. J Biol Chem 281:1731–1740

    Article  PubMed  CAS  Google Scholar 

  • Rot A (1992) Endothelial cell binding of NAP-1/IL-8: role in neutrophil emigration. Immunol Today 13:291–294

    Article  PubMed  CAS  Google Scholar 

  • Rot A, Hub E, Middleton J et al (1996) Some aspects of IL-8 pathophysiology III: chemokine interaction with endothelial cells. J Lukoc Biol 59:39–44

    CAS  Google Scholar 

  • Rueda P, Balabanian K, Lagane B et al (2008) The CXCL12γ chemokine displays unprecedented structural ad functional properties that make it a paradigm of chemoattractant proteins. PLoS One 3:e2543

    Article  PubMed  Google Scholar 

  • Ruhrberg C (2003) Growing and shaping the vascular tree: multiple roles for VEGF. Bioessays 25:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Schuksz M, Fuster MM, Brown JR et al (2008) Surfen, a small molecule antagonist of heparan sulphate. Proc Natl Acad Sci USA 105:13075–13080

    Article  PubMed  CAS  Google Scholar 

  • Segerer S, Johnson Z, Rek A et al (2009) The basic residue cluster 55KKWVR59 in CCL5 is required for in vivo biologic function. Mol Immunol 46:2533–2538

    Article  PubMed  CAS  Google Scholar 

  • Shamri R, Grabovsky V, Gauguet JM et al (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6:497–506

    Article  PubMed  CAS  Google Scholar 

  • Solic N, Wilson J, Wilson SJ, Shute JK (2005) Endothelial activation and increased heparan sulfate expression in cystic fibrosis. Am J Respir Crit Care Med 72:892–898

    Article  Google Scholar 

  • Spillman D, Witt D, Lindahl U (1998) Defining the interleukin-8 binding domain of heparan sulphate. J Biol Chem 273:15487–15493

    Article  Google Scholar 

  • Stringer SE, Gallagher JT (1997) Specific binding of the chemokine platelet factor 4 to heparan sulphate. J Biol Chem 272:20508–20514

    Article  PubMed  CAS  Google Scholar 

  • Sutton A, Friand V, Papy-Garcia D et al (2007) Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells. Mol Cancer Ther 6:2948–2958

    Article  PubMed  CAS  Google Scholar 

  • Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59

    PubMed  CAS  Google Scholar 

  • Wagner L, Yang OO, Garcia-Zepeda EA et al (1998) Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391(6670):908–911

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulphate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910

    Article  PubMed  CAS  Google Scholar 

  • Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Visentin GP, Dayananda K, Neelamegham S (2008) Immune complexes formed following the binding of anti-platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion. Blood 112:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Park PW, Kheradmand F, Corry DB (2005) Endogenous attenuation of allergic lung inflammation by syndecan-1. J Immunol 174:5758–5765

    PubMed  CAS  Google Scholar 

  • Yamaguchi K, Tamaki H, Fukui S (2006) Detection of oligosaccharide ligands for hepatocyte growth factor/scatter factor (HGF/SF), keratinocyte growth factor (KGF/FGF-7), RANTES and heparin cofactor II by neoglycolipid microarrays of glycosaminoglycan-derived oligosaccharide fragments. Glycoconj J 23:513–523

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Matsushima K, Tanaka S et al (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host-defense cytokines. Proc Natl Acad Sci USA 84:9233–9237

    Article  PubMed  CAS  Google Scholar 

  • Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Shute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shute, J. (2012). Glycosaminoglycan and Chemokine/Growth Factor Interactions. In: Lever, R., Mulloy, B., Page, C. (eds) Heparin - A Century of Progress. Handbook of Experimental Pharmacology, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23056-1_13

Download citation

Publish with us

Policies and ethics