Skip to main content
Log in

Space-based detectors

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload “LISA Technology Package” will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amaro Seoane, P., et al.: The Gravitational Universe, arXiv:1305:5720 (2013)

  2. Stroeer, A., Vecchio, A.: The LISA verification binaries. Class. Quantum Gravity 23, 809 (2006)

    Article  ADS  Google Scholar 

  3. Nelemans, G., Yungelson, L.R.: The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. A & A 375, 890 (2001)

    Article  ADS  Google Scholar 

  4. Nissanke, S., Vallisneri, M., Nelemans, G., Prince, T.A.: Gravitational-wave emission from compact Galactic binaries. Astrophys. J. 758, 131 (2012)

    Article  ADS  Google Scholar 

  5. Volonteri, M., Haardt, F., Madau, P.: The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 599 (2003)

    Article  ADS  Google Scholar 

  6. Malbon, R.K., Baugh, C.M., Frenk, C.S., Lacey, C.G.: Black hole growth in hierarchical galaxy formation. Mon. Not. R. Astron. Soc. 382, 1394 (2007)

    Article  ADS  Google Scholar 

  7. Sesana, A., Gair, J., Berti, E., Volonteri, M.: Reconstructing the massive black hole cosmic history through gravitational waves. Phys. Rev. D 83, 4036 (2011)

    Article  ADS  Google Scholar 

  8. Barack, L., Cutler, C.: LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D. 69 (2004)

  9. Volonteri, M.: The early evolution of massive black holes, arXiv:0912.0525 (2009)

  10. Gair, J.R., Tang, C., Volonteri, M.: LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys. Rev. D 81, 4014 (2010)

    Article  Google Scholar 

  11. Rummel, R., Yi, W., Stummer, C.: GOCE gravitational gradiometry. J. Geodesy 85, 777 (2011)

    Article  ADS  Google Scholar 

  12. Antonucci, F., et al.: From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion. Class. Quantum Gravity 28, 094002 (2011)

    Article  ADS  Google Scholar 

  13. Dolesi, R., et al.: Gravitational sensor for LISA and its technology demonstration mission. Class. Quantum Gravity 20, S99 (2003)

    Article  ADS  MATH  Google Scholar 

  14. Weber, W.J., et al.: Position sensors for flight testing of LISA drag-free control. SPIE Proceedings 4856, 31 (2003)

    Article  ADS  Google Scholar 

  15. Willemenot, E., Touboul, P.: On-ground investigation of space accelerometers noise with an electrostatic torsion pendulum. Rev. Sci. Instr. 71, 302 (2000)

  16. Antonucci, F., et al.: Interaction between stray electrostatic fields and a charged free-falling test mass. Phys. Rev. Lett. 108, 181101 (2012)

    Article  ADS  Google Scholar 

  17. Cavalleri, A., et al.: Increased brownian force noise from molecular impacts in a constrained volume. Phys. Rev. Lett. 103, 140601 (2009)

    Article  ADS  Google Scholar 

  18. Cavalleri, A., et al.: A new torsion pendulum for testing the limits of free-fall for LISA test masses. Class. Quantum Gravity 26, 094017 (2009)

    Article  ADS  Google Scholar 

  19. Wiese, D.N., Folkner, W.M., Nerem, R.S.: Alternative mission architectures for a gravity recovery satellite mission. J. Geodesy 83, 569 (2009)

    Article  ADS  Google Scholar 

  20. Ashby, N., et al.: Measurement of gravitational time delay using drag-free spacecraft and an optical clock. Proc. Int. Astr. Union Symp. 5, 414 (2009)

    Article  Google Scholar 

  21. Robertson, D.I., et al.: Construction and testing of the optical bench for LISA Pathfinder. Class. Quantum Gravity 30, 085006 (2013)

    Article  ADS  Google Scholar 

  22. Killow, C.J., et al.: Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level. Appl. Opt. 52, 177–181 (2013)

    Article  ADS  Google Scholar 

  23. Fitzsimons, E.D., et al.: Precision absolute positional measurement of laser beams. Appl. Opt. 52, 2527–2530 (2013)

    Article  ADS  Google Scholar 

  24. Racca, G.D., McNamara, P.W.: The LISA pathfinder mission. Sp. Sci. Rev. 151, p159–181 (2010)

    Article  ADS  Google Scholar 

  25. Amaro-Seone, P., et al.: eLISA: Astrophysics and cosmology in the millihertz regime. GW Notes 6, p4–110 (2013)

    Google Scholar 

  26. Shaddock, D., et al.: Overview of the LISA phasemeter. AIP Conf. Proc. 873, 689–696 (2006)

    Article  Google Scholar 

  27. Gerberding, O., et al.: Breadboard model of the LISA phasemeter. ASP Conference Series, 467, 271, 9th LISA Symposium (2012) arXiv.org/abs/1208.6418

  28. Sutton, A.J., et al.: Improved optical ranging for space based gravitational wave detection. Class. Quantum Gravity 30, 075008 (2013)

    Article  ADS  Google Scholar 

  29. Esteban, J.J., et al.: Experimental demonstration of weak-light laser ranging and data communication for LISA. Opt. Express 19, 15937 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. McNamara, P.W.: Weak-light phase locking for LISA. Class. Quantum Gravity 22, S243 (2005)

    Article  ADS  Google Scholar 

  31. Heinzel, G., et al.: Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication. Class. Quantum Gravity 28, 094008 (2011)

    Article  ADS  Google Scholar 

  32. Gerberding, O., et al.: Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Class. Quantum Gravity 30, 235029 (2013)

    Article  ADS  Google Scholar 

  33. Magueijo, J., Mozaffari, A.: Case for testing modified Newtonian dynamics using LISA pathfinder. Phys. Rev. D 85, 043527 (2012)

    Article  ADS  Google Scholar 

  34. Sumner, T.: Science with LISA pathfinder. ASP Conf. Ser. 467, 129–140 (2013)

    ADS  Google Scholar 

  35. Graham, P.W., Hogan, J.M., Kasevich, M.A., Rajendran, S.: New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett. 110, 171102 (2013)

    Article  ADS  Google Scholar 

  36. Sugarbaker, A., Dickerson, A.M., Hogan, J.M., Johnson, D.M.S., Kasevich, M.A.: Enhanced atom interferometer readout through the application of phase shear. Phys. Rev. Lett. 111, 113002 (2013)

    Article  ADS  Google Scholar 

  37. Jennrich, O., et al.: LISA, Unveiling a hidden Universe: Assessment Study Report, ESA/SRE(2011) (2011)

  38. Seto, N., Kawamura, S., Nakamura, T.: Possibility of direct measurement of the acceleration of the universe Using 0.1 Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001)

    Article  ADS  Google Scholar 

  39. Kawamura, S., et al.: The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Gravity 28, 094011 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Aerospace Exploration Agency (JAXA), by the Japan Society for the Promotion of Science (JSPS), Grant-in-aid for scientific research, by the Global COE Program of the graduated school of science in Kyoto University, and by the Research Center for the Early Universe (RESCEU) at the University of Tokyo.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to B. S. Sathyaprakash.

Additional information

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10. Guest Editors: Jerzy Lewandowski, Bala Iyer, Sheila Rowan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sesana, A., Weber, W.J., Killow, C.J. et al. Space-based detectors. Gen Relativ Gravit 46, 1793 (2014). https://doi.org/10.1007/s10714-014-1793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1793-0

Keywords

Navigation