Skip to main content

Space-Based Gravitational Wave Observatories

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

In this chapter, we will describe the detection of gravitational waves with space-based interferometric gravitational wave observatories. We will provide an overview of the key technologies underlying their operation, illustrated using the specific example of the Laser Interferometer Space Antenna (LISA). We will then give an overview of data analysis strategies for space-based detectors, including a description of time-delay interferometry, which is required to suppress laser frequency noise to the necessary level. We will describe the main sources of gravitational waves in the millihertz frequency range targeted by space-based detectors and then discuss some of the key science investigations that these observations will facilitate. Once again, quantitative statements given here will make reference to the capabilities of LISA, as that is the best studied mission concept. Finally, we will describe some of the proposals for even more sensitive space-based detectors that could be launched further in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abbott B, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C et al (2019) Gwtc-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9(3). https://doi.org/10.1103/PhysRevX.9.031040

  2. Abbott B, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C et al (2020) Gwtc-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

    Google Scholar 

  3. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB et al (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J 848(2):L12. https://doi.org/10.3847/2041-8213/aa91c9

    Article  ADS  Google Scholar 

  4. Abbott BP et al (2016) Astrophysical implications of the binary black hole merger gw150914. Astrophys J 818(2):L22. https://doi.org/10.3847/2041-8205/818/2/l22

    Article  ADS  Google Scholar 

  5. Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. https://doi.org/10.1103/PhysRevLett.116.061102

    Article  ADS  MathSciNet  Google Scholar 

  6. Abbott BP et al (2016) Tests of general relativity with GW150914. Phys Rev Lett 116(22):221101. https://doi.org/10.1103/PhysRevLett.116.221101, https://doi.org/10.1103/PhysRevLett.121.129902. [Erratum: Phys Rev Lett 121(12):129902 (2018)]

  7. Abbott BP et al (2017) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678):85–88. https://doi.org/10.1038/nature24471. ArXiv:1710.05835

  8. Abbott BP et al (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101. https://doi.org/10.1103/PhysRevLett.119.161101. ArXiv:1710.05832

  9. Abbott BP et al (2019) A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo. ArXiv:1908.06060

    Google Scholar 

  10. Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C, Agathos M et al (2020) Gw190521: a binary black hole merger with a total masse of 150 mSun. Phys Rev Lett 125(10). https://doi.org/10.1103/PhysRevLett.125.101102

  11. Abbott R et al (2020) Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog

    Google Scholar 

  12. Abedi J, Dykaar H, Afshordi N (2017) Echoes from the Abyss: tentative evidence for Planck-scale structure at black hole horizons. Phys Rev D96(8):082004. https://doi.org/10.1103/PhysRevD.96.082004

    ADS  Google Scholar 

  13. Adams MR, Cornish NJ, Littenberg TB (2012) Astrophysical model selection in gravitational wave astronomy. Phys Rev D 86:124032. https://doi.org/10.1103/PhysRevD.86.124032

    Article  ADS  Google Scholar 

  14. Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N et al (2020) Planck 2018 results. Astron Astrophys 641:A6. https://doi.org/10.1051/0004-6361/201833910

    Article  Google Scholar 

  15. Alexander S, Finn LS, Yunes N (2008) A gravitational-wave probe of effective quantum gravity. Phys Rev D78:066005. https://doi.org/10.1103/PhysRevD.78.066005

    ADS  MathSciNet  Google Scholar 

  16. Amaro-Seoane P (2018) Detecting intermediate-mass ratio inspirals from the ground and space. Phys Rev D 98(6):063018. https://doi.org/10.1103/PhysRevD.98.063018

    Article  ADS  Google Scholar 

  17. Amaro-Seoane P (2018) Relativistic dynamics and extreme mass ratio inspirals. Living Rev Relat 21(1). https://doi.org/10.1007/s41114-018-0013-8

  18. Amaro-Seoane P (2019) Extremely large mass-ratio inspirals. Phys Rev D 99(12). https://doi.org/10.1103/physrevd.99.123025

  19. Amaro-Seoane P, Aoudia S, Babak S, Binétruy P, Berti E, Bohé A, Caprini C, Colpi M, Cornish NJ, Danzmann K, Dufaux JF, Gair J, Jennrich O, Jetzer P, Klein A, Lang RN, Lobo A, Littenberg T, McWilliams ST, Nelemans G, Petiteau A, Porter EK, Schutz BF, Sesana A, Stebbins R, Sumner T, Vallisneri M, Vitale S, Volonteri M, Ward H (2012) elisa: astrophysics and cosmology in the millihertz regime

    Google Scholar 

  20. Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser interferometer space antenna. arXiv e-prints arXiv:1702.00786

    Google Scholar 

  21. Amaro-Seoane P, Gair JR, Freitag M, Miller MC, Mandel I, Cutler CJ, Babak S (2007) Topical review: intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA. Class Quant Grav 24(17):R113–R169. https://doi.org/10.1088/0264-9381/24/17/R01

    Article  ADS  MATH  Google Scholar 

  22. Amaro-Seoane P, Preto M (2011) The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth. Class Quant Grav 28(9):094017. https://doi.org/10.1088/0264-9381/28/9/094017

    Article  ADS  MATH  Google Scholar 

  23. Antonini F, Barausse E, Silk J (2015) The coevolution of nuclear star clusters, massive black holes, and their host galaxies. Astrophys J 812(1):72 . https://doi.org/10.1088/0004-637x/812/1/72

    Article  ADS  Google Scholar 

  24. Antonini F, Perets HB (2012) Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica. Astrophys J 757(1):27. https://doi.org/10.1088/0004-637x/757/1/27

    Article  ADS  Google Scholar 

  25. Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gallegos J, García Marirrodriga C, Gerndt R, Gesa LI, Gibert F, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspé H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Mance D, Martín V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Romera Perez JA, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vetrugno D, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel P (2015) The LISA pathfinder mission. J Phys Conf Ser 610:012005. https://doi.org/10.1088/1742-6596/610/1/012005

    Article  Google Scholar 

  26. Armano M, Audley H, Auger G, Baird JT, Bassan M, Binetruy P, Born M, Bortoluzzi D, Brandt N, Caleno M, Carbone L, Cavalleri A, Cesarini A, Ciani G, Congedo G, Cruise AM, Danzmann K, de Deus Silva M, De Rosa R, Diaz-Aguiló M, Di Fiore L, Diepholz I, Dixon G, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fichter W, Fitzsimons ED, Flatscher R, Freschi M, García Marín AF, García Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Guzmán F, Grado A, Grimani C, Grynagier A, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Johann U, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Madden S, Mateos I, McNamara PW, Mendes J, Mendes L, Monsky A, Nicolodi D, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Raïs B, Ramos-Castro J, Reiche J, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sanjuán J, Sarra P, Schleicher A, Shaul D, Slutsky J, Sopuerta CF, Stanga R, Steier F, Sumner T, Texier D, Thorpe JI, Trenkel C, Tröbs M, Tu HB, Vetrugno D, Vitale S, Wand V, Wanner G, Ward H, Warren C, Wass PJ, Wealthy D, Weber WJ, Wissel L, Wittchen A, Zambotti A, Zanoni C, Ziegler T, Zweifel P (2016) Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys Rev Lett 116(23):231101. https://doi.org/10.1103/PhysRevLett.116.231101

    Article  ADS  Google Scholar 

  27. Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Castelli E, Cavalleri A, Cesarini A, Cruise AM, Danzmann K, de Deus Silva M, Diepholz I, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons ED, Freschi M, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Meshksar N, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Ramos-Castro J, Reiche J, Robertson DI, Rivas F, Russano G, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe JI, Vetrugno D, Vitale S, Wanner G, Ward H, Wass PJ, Weber WJ, Wissel L, Wittchen A, Zweifel P (2018) Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μ Hz. Phys Rev Lett 120(6):061101. https://doi.org/10.1103/PhysRevLett.120.061101

    Article  ADS  Google Scholar 

  28. Arun KG, Iyer BR, Qusailah MSS, Sathyaprakash BS (2006) Testing post-Newtonian theory with gravitational wave observations. Class Quant Grav 23(9):L37–L43. https://doi.org/10.1088/0264-9381/23/9/l01

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Auclair P et al (2020) Probing the gravitational wave background from cosmic strings with LISA. JCAP 04:034. https://doi.org/10.1088/1475-7516/2020/04/034

    Article  ADS  Google Scholar 

  30. Babak S (2017) “Enchilada” is back on the menu. J Phys Conf Ser 840:012026. https://doi.org/10.1088/1742-6596/840/1/012026

    Article  Google Scholar 

  31. Babak S, Baker JG, Benacquista MJ, Cornish NJ, Crowder J, Larson SL, Plagnol E, Porter EK, Vallisneri M, Vecchio A, Data Challenge Task Force TML, Arnaud K, Barack L, Błaut A, Cutler C, Fairhurst S, Gair J, Gong X, Harry I, Khurana D, Królak A, Mandel I, Prix R, Sathyaprakash BS, Savov P, Shang Y, Trias M, Veitch J, Wang Y, Wen L, Whelan JT, Challenge-1B participants T (2008) The mock LISA data challenges: from challenge 1B to challenge 3. Class Quant Grav 25(18):184026. https://doi.org/10.1088/0264-9381/25/18/184026

  32. Babak S, Baker JG, Benacquista MJ, Cornish NJ, Larson SL, Mandel I, McWilliams ST, Petiteau A, Porter EK, Robinson EL, Vallisneri M, Vecchio A, Data Challenge Task Force TML, Adams M, Arnaud KA, Błaut A, Bridges M, Cohen M, Cutler C, Feroz F, Gair JR, Graff P, Hobson M, Shapiro Key J, Królak A., Lasenby A, Prix R, Shang Y, Trias M, Veitch J, Whelan JT, Participants TC (2010) The Mock LISA data challenges: from challenge 3 to challenge 4. Class Quant Grav 27(8):084009. https://doi.org/10.1088/0264-9381/27/8/084009

    Article  ADS  Google Scholar 

  33. Babak S, Gair J, Sesana A, Barausse E, Sopuerta CF, Berry CPL, Berti E, Amaro-Seoane P, Petiteau A, Klein A (2017) Science with the space-based interferometer LISA. V: extreme mass-ratio inspirals. Phys Rev D95(10):103012. https://doi.org/10.1103/PhysRevD.95.103012

  34. Babak S, Gair JR, Porter EK (2009) An algorithm for the detection of extreme mass ratio inspirals in LISA data. Class Quant Grav 26(13):135004. https://doi.org/10.1088/0264-9381/26/13/135004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Baghi Q, Thorpe JI, Slutsky J, Baker J (2020) A statistical inference approach to time-delay interferometry for gravitational-wave detection. arXiv e-prints arXiv:2010.07224

    Google Scholar 

  36. Baibhav V, Barack L, Berti E, Bonga B, Brito R, Cardoso V, Compère G, Das S, Doneva D, Garcia-Bellido J, Heisenberg L, Hughes SA, Isi M, Jani K, Kavanagh C, Lukes-Gerakopoulos G, Mueller G, Pani P, Petiteau A, Rajendran S, Sotiriou TP, Stergioulas N, Taylor A, Vagenas E, van de Meent M, Warburton N, Wardell B, Witzany V, Zimmerman A (2019) Probing the nature of black holes: deep in the MHz gravitational-wave sky

    Google Scholar 

  37. Baker J, Baker T, Carbone C, Congedo G, Contaldi C, Dvorkin I, Gair J, Haiman Z, Mota DF, Renzini A, Buis EJ, Cusin G, Ezquiaga JM, Mueller G, Pieroni M, Quenby J, Ricciardone A, Saltas ID, Shao L, Tamanini N, Tasinato G, Zumalacárregui M (2019) High angular resolution gravitational wave astronomy. arXiv e-prints arXiv:1908.11410

    Google Scholar 

  38. Barack L, Cutler C (2004) Confusion noise from lisa capture sources. Phys Rev D 70:122002. https://doi.org/10.1103/PhysRevD.70.122002

    Article  ADS  Google Scholar 

  39. Barack L, Cutler C (2004) Lisa capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys Rev D 69(8). https://doi.org/10.1103/physrevd.69.082005

  40. Barack L, Cutler C (2007) Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes. Phys Rev D75:042003. https://doi.org/10.1103/PhysRevD.75.042003

    ADS  Google Scholar 

  41. Barack L et al (2019) Black holes, gravitational waves and fundamental physics: a roadmap. Class Quant Grav 36(14):143001. https://doi.org/10.1088/1361-6382/ab0587

    Article  ADS  MathSciNet  Google Scholar 

  42. Barausse E, Cardoso V, Pani P (2014) Can environmental effects spoil precision gravitational-wave astrophysics? Phys Rev D 89(10). https://doi.org/10.1103/physrevd.89.104059

  43. Barausse E, Yunes N, Chamberlain K (2016) Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys Rev Lett 116(24). https://doi.org/10.1103/physrevlett.116.241104

  44. Barke S, Tröbs M, Sheard B, Heinzel G, Danzmann K (2009) Phase noise contribution of EOMs and HF cables. J Phys Conf Ser 154:012006. https://doi.org/10.1088/1742-6596/154/1/012006

    Article  Google Scholar 

  45. Bartolo N et al (2016) Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves. JCAP 12:026. https://doi.org/10.1088/1475-7516/2016/12/026

  46. Bayle JB (2019) Simulation and data analysis for lisa: instrumental modeling, time-delay interferometry, noise-reduction permormance study, and discrimination of transient gravitational signals. Ph.D. thesis, Université de Paris. http://www.theses.fr/2019UNIP7123

  47. Bayle JB, Lilley M, Petiteau A, Halloin H (2019) Effect of filters on the time-delay interferometry residual laser noise for LISA. Phys Rev D 99(8):084023. https://doi.org/10.1103/PhysRevD.99.084023

    Article  ADS  Google Scholar 

  48. Bender PL, Begelman MC, Gair JR (2013) Possible LISA follow-on mission scientific objectives. Class Quant Grav 30(16):165017. https://doi.org/10.1088/0264-9381/30/16/165017

    Article  ADS  Google Scholar 

  49. Bender PL, Begelman MC (2005) Trends in space science and cosmic vision 2020 (ESA SP-588). Technical report, ESA Publications Division

    Google Scholar 

  50. Berry CPL, Gair JR Observing the galaxy’s massive black hole with gravitational wave bursts. Mon Not R Astron Soc 429(1):589–612 (2012). https://doi.org/10.1093/mnras/sts360

    Article  ADS  Google Scholar 

  51. Berry CPL, Gair JR (2013) Extreme-mass-ratio-bursts from extragalactic sources. Mon Not R Astron Soc 433(4):3572–3583. https://doi.org/10.1093/mnras/stt990

    Article  ADS  Google Scholar 

  52. Berti E, Barausse E, Cardoso V, Gualtieri L, Pani P, Sperhake U, Stein LC, Wex N, Yagi K, Baker T et al (2015) Testing general relativity with present and future astrophysical observations. Class Quant Grav 32(24):243001. https://doi.org/10.1088/0264-9381/32/24/243001

    Article  ADS  Google Scholar 

  53. Berti E, Buonanno A, Will CM (2005) Estimating spinning binary parameters and testing alternative theories of gravity with LISA. Phys Rev D71:084025. https://doi.org/10.1103/PhysRevD.71.084025

    ADS  Google Scholar 

  54. Berti E, Cardoso V, Will CM (2006) Gravitational-wave spectroscopy of massive black holes with the space interferometer lisa. Phys Rev D 73(6). https://doi.org/10.1103/physrevd.73.064030

  55. Berti E, Sesana A, Barausse E, Cardoso V, Belczynski K (2016) Spectroscopy of kerr black holes with earth- and space-based interferometers. Phys Rev Lett 117(10). https://doi.org/10.1103/physrevlett.117.101102

  56. Berti E, Volonteri M (2008) Cosmological black hole spin evolution by mergers and accretion. Astrophys J 684(2):822–828. https://doi.org/10.1086/590379

    Article  ADS  Google Scholar 

  57. Berti E, Yagi K, Yang H, Yunes N (2018) Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown. Gen Relat Grav 50(5):49. https://doi.org/10.1007/s10714-018-2372-6

    Article  ADS  MATH  Google Scholar 

  58. Berti E, Yagi K, Yunes N (2018) Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral-merger. Gen. Rel Grav 50(4):46. https://doi.org/10.1007/s10714-018-2362-8

  59. Berti E, Yagi K, Yunes N (2018) Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral–merger. Gen Relat Gravit 50(4). https://doi.org/10.1007/s10714-018-2362-8

  60. Binétruy P, Bohé A, Caprini C, Dufaux JF (2012) Cosmological backgrounds of gravitational waves and elisa/ngo: phase transitions, cosmic strings and other sources. J Cosmol Astropart Phys 2012(06):027. https://doi.org/10.1088/1475-7516/2012/06/027

    Article  Google Scholar 

  61. Błaut A, Babak S, Królak A (2010) Mock LISA data challenge for the Galactic white Dwarf binaries. Phys Rev D 81(6):063008. https://doi.org/10.1103/PhysRevD.81.063008

    Article  ADS  Google Scholar 

  62. Blelly A, Moutarde H, Bobin J (2020) Sparsity-based recovery of Galactic-binary gravitational waves. Phys Rev D 102(10):104053. https://doi.org/10.1103/PhysRevD.102.104053

    Article  ADS  MathSciNet  Google Scholar 

  63. Bonetti M, Sesana A (2020) Gravitational wave background from extreme mass ratio inspirals. Phys Rev D 102(10). https://doi.org/10.1103/physrevd.102.103023

  64. Bonetti M, Sesana A, Haardt F, Barausse E, Colpi M (2019) Post-Newtonian evolution of massive black hole triplets in galactic nuclei – IV. Implications for LISA. MNRAS 486(3):4044–4060. https://doi.org/10.1093/mnras/stz903

    Article  ADS  Google Scholar 

  65. Breivik K, Rodriguez CL, Larson SL, Kalogera V, Rasio FA (2016) Distinguishing between formation channels for binary black holes with LISA. ApJ 830(1):L18. https://doi.org/10.3847/2041-8205/830/1/L18

    Article  ADS  Google Scholar 

  66. Brito R, Cardoso V, Pani P (2015) Superradiance. Lect Notes Phys 906:1–237. https://doi.org/10.1007/978-3-319-19000-6

    Article  Google Scholar 

  67. Brito R, Ghosh S, Barausse E, Berti E, Cardoso V, Dvorkin I, Klein A, Pani P (2017) Gravitational wave searches for ultralight bosons with LIGO and lisa. Phys Rev D 96(6). https://doi.org/10.1103/physrevd.96.064050

  68. Brito R, Ghosh S, Barausse E, Berti E, Cardoso V, Dvorkin I, Klein A, Pani P (2017) Stochastic and resolvable gravitational waves from ultralight bosons. Phys Rev Lett 119(13). https://doi.org/10.1103/physrevlett.119.131101

  69. Bromm V, Coppi PS, Larson RB (1999) Forming the first stars in the universe: the fragmentation of primordial gas. ApJ 527(1):L5–L8. https://doi.org/10.1086/312385

    Article  ADS  Google Scholar 

  70. Bromm V, Loeb A Formation of the first supermassive black holes. ApJ 596(1), 34–46 (2003). https://doi.org/10.1086/377529

    Article  ADS  Google Scholar 

  71. Brustein R, Gasperini M, Giovannini M, Veneziano G (1995) Relic gravitational waves from string cosmology. Phys Lett B 361(1):45–51. https://doi.org/10.1016/0370-2693(95) 01128-D

    Article  ADS  MathSciNet  Google Scholar 

  72. Buonanno A, Maggiore M, Ungarelli C (1997) Spectrum of relic gravitational waves in string cosmology. Phys Rev D 55(6):3330–3336. https://doi.org/10.1103/physrevd.55.3330

    Article  ADS  Google Scholar 

  73. Burke O, Gair JR, Simón J, Edwards MC (2020) Constraining the spin parameter of near-extremal black holes using lisa. Phys Rev D 102(12). https://doi.org/10.1103/physrevd.102.124054

  74. Canizares P, Gair JR, Sopuerta CF (2012) Testing chern-simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries. Phys Rev D 86:044010. https://doi.org/10.1103/PhysRevD.86.044010

    Article  ADS  Google Scholar 

  75. Caprini C, Figueroa DG, Flauger R, Nardini G, Peloso M, Pieroni M, Ricciardone A, Tasinato G (2019) Reconstructing the spectral shape of a stochastic gravitational wave background with LISA. JCAP 11:017. https://doi.org/10.1088/1475-7516/2019/11/017

    Article  ADS  MathSciNet  Google Scholar 

  76. Caprini C, Hindmarsh M, Huber S, Konstandin T, Kozaczuk J, Nardini G, No JM, Petiteau A, Schwaller P, Servant G et al (2016) Science with the space-based interferometer elisa. II: gravitational waves from cosmological phase transitions. J Cosmol Astropart Phys 2016(04):001. https://doi.org/10.1088/1475-7516/2016/04/001

  77. Caprini C et al (2016) Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions. JCAP 04:001. https://doi.org/10.1088/1475-7516/2016/04/001

  78. Caprini C et al (2020) Detecting gravitational waves from cosmological phase transitions with LISA: an update. JCAP 03:024. https://doi.org/10.1088/1475-7516/2020/03/024

    Article  ADS  Google Scholar 

  79. Cardoso V, Gualtieri L, Moore CJ (2019) Gravitational waves and higher dimensions: love numbers and Kaluza-Klein excitations. Phys Rev D100(12):124037. https://doi.org/10.1103/PhysRevD.100.124037

    ADS  MathSciNet  Google Scholar 

  80. Cardoso V, Hopper S, Macedo CFB, Palenzuela C, Pani P (2016) Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys Rev D94(8):084031. https://doi.org/10.1103/PhysRevD.94.084031

    ADS  MathSciNet  Google Scholar 

  81. Cardoso V, Kimura M, Maselli A, Berti E, Macedo CF, McManus R (2019) Parametrized black hole quasinormal ringdown: decoupled equations for nonrotating black holes. Phys Rev D 99(10). https://doi.org/10.1103/physrevd.99.104077

  82. Cardoso V, Pani P (2019) Testing the nature of dark compact objects: a status report. Living Rev Relat 22(1):4. https://doi.org/10.1007/s41114-019-0020-4

    Article  ADS  Google Scholar 

  83. Carson Z, Yagi K (2020) Parametrized and inspiral-merger-ringdown consistency tests of gravity with multiband gravitational wave observations. Phys Rev D 101(4). https://doi.org/10.1103/physrevd.101.044047

  84. Cavalleri A, Ciani G, Dolesi R, Heptonstall A, Hueller M, Nicolodi D, Rowan S, Tombolato D, Vitale S, Wass PJ, Weber WJ (2009) Increased Brownian force noise from molecular impacts in a constrained volume. Phys Rev Lett 103(14):140601. https://doi.org/10.1103/PhysRevLett.103.140601

    Article  ADS  Google Scholar 

  85. Chwalla M, Danzmann K, Álvarez MD, Delgado JJE, Fernández Barranco G, Fitzsimons E, Gerberding O, Heinzel G, Killow CJ, Lieser M, Perreur-Lloyd M, Robertson DI, Rohr JM, Schuster S, Schwarze TS, Tröbs M, Wanner G, Ward H (2020) Optical suppression of tilt-to-length coupling in the LISA long-arm interferometer. Phys Rev Appl 14(1):014030. https://doi.org/10.1103/PhysRevApplied.14.014030

    Article  ADS  Google Scholar 

  86. Coe D, Zitrin A, Carrasco M, Shu X, Zheng W, Postman M, Bradley L, Koekemoer A, Bouwens R, Broadhurst T, Monna A, Host O, Moustakas LA, Ford H, Moustakas J, van der Wel A, Donahue M, Rodney SA, Benítez N, Jouvel S, Seitz S, Kelson DD, Rosati P (2013) CLASH: three strongly lensed images of a candidate z ≈ 11 galaxy. ApJ 762(1):32. https://doi.org/10.1088/0004-637X/762/1/32

    Article  ADS  Google Scholar 

  87. Collins NA, Hughes SA (2004) Towards a formalism for mapping the spacetimes of massive compact objects: bumpy black holes and their orbits. Phys Rev D 69(12). https://doi.org/10.1103/physrevd.69.124022

  88. Community White Papers (2019) Astro2020 decadal survey on astronomy and astrophysics. Technical report, NASA. https://baas.aas.org/astro2020-apc

    Google Scholar 

  89. Community White Papers (2019) Voyage 2050 long-term planning of the ESA science programme. Technical report, ESA. https://www.cosmos.esa.int/web/voyage-2050/white-papers

    Google Scholar 

  90. Conklin JW, Buchman S, Aguero V, Alfauwaz A, Aljadaan A, Almajed M, Altwaijry H, Al-Saud T, Balakrishnan K, Byer RL, Bower K, Costello B, Cutler GD, DeBra DB, Faied DM, Foster C, Genova AL, Hanson J, Hooper K, Hultgren E, Jaroux B, Klavins A, Lantz B, Lipa JA, Palmer A, Plante B, Sanchez HS, Saraf S, Schaechter D, Sherrill T, Shu KL, Smith E, Tenerelli D, Vanbezooijen R, Vasudevan G, Williams SD, Worden SP, Zhou J, Zoellner A (2011) LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar Lagrange points. arXiv e-prints arXiv:1111.5264

    Google Scholar 

  91. Copeland EJ, Myers RC, Polchinski J (2004) Cosmic f- and d-strings. J High Energy Phys 2004(06):013–013. https://doi.org/10.1088/1126-6708/2004/06/013

    Article  Google Scholar 

  92. Cornish N, Sampson L, Yunes N, Pretorius F (2011) Gravitational wave tests of general relativity with the parameterized post-einsteinian framework. Phys Rev D 84:062003. https://doi.org/10.1103/PhysRevD.84.062003

    Article  ADS  Google Scholar 

  93. Cornish NJ, Porter EK (2007) The search for massive black hole binaries with LISA. Class Quant Grav 24(23):5729–5755. https://doi.org/10.1088/0264-9381/24/23/001

    Article  ADS  MATH  Google Scholar 

  94. Crowder J, Cornish N, Reddinger L (2006) Darwin’s design: genetic algorithms and likelihood surfaces in LISA data analysis. In: APS April Meeting Abstracts, p P11.004

    Google Scholar 

  95. Crowder J, Cornish NJ (2005) Beyond LISA: exploring future gravitational wave missions. Phys Rev D 72(8):083005. https://doi.org/10.1103/PhysRevD.72.083005

    Article  ADS  Google Scholar 

  96. Danzmann K et al (1993) LISA – proposal for a laser-interferometric gravitational wave detector in space. Technical report, Max-Planck-Institut fur Quantenoptik, Report

    Google Scholar 

  97. Danzmann K et al (1998) LISA: laser interferometer space antenna for the detection and observation of gravitational waves pre-phase A report. Technical report, ESA. http://www2.mpq.mpg.de/$sim$ros/lisa/ppa2.09.pdf

  98. Davies MB, King A (2005) The stars of the galactic center. Astrophys J 624(1):L25–L27. https://doi.org/10.1086/430308

    Article  ADS  Google Scholar 

  99. de Vine G, Ware B, McKenzie K, Spero RE, Klipstein WM, Shaddock DA (2010) Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys Rev Lett 104(21):211103. https://doi.org/10.1103/PhysRevLett.104.211103

    Article  ADS  Google Scholar 

  100. Decher R, Randall JL, Bender PL, Faller JE (1980) Design aspects of a laser gravitational wave detector in space. In: Cuneo WJ (ed) Active optical devices and applications, Society of photo-optical instrumentation engineers (SPIE) conference series, vol 228, pp 149–153. https://doi.org/10.1117/12.958779

  101. Del Pozzo W, Sesana A, Klein A (2018) Stellar binary black holes in the LISA band: a new class of standard sirens. Mon Not R Astron Soc 475(3):3485–3492. https://doi.org/10.1093/mnras/sty057

    Article  ADS  Google Scholar 

  102. Devecchi B, Volonteri M, Rossi EM, Colpi M, Portegies Zwart S (2012) High-redshift formation and evolution of central massive objects – II. The census of BH seeds. Mon Not R Astron Soc 421(2):1465–1475. https://doi.org/10.1111/j.1365-2966.2012.20406.x

    Article  ADS  Google Scholar 

  103. Dhurandhar SV, Nayak KR, Vinet JY (2002) Algebraic approach to time-delay data analysis for LISA. Phys Rev D 65(10):102002. https://doi.org/10.1103/PhysRevD.65.102002

    Article  ADS  Google Scholar 

  104. Dolgov AD, Grasso D, Nicolis A (2002) Relic backgrounds of gravitational waves from cosmic turbulence. Phys Rev D 66:103505 . https://doi.org/10.1103/PhysRevD.66.103505

    Article  ADS  Google Scholar 

  105. Du Y, Tahura S, Vaman D, Yagi K (2020) Probing compactified extra dimensions with gravitational waves

    Google Scholar 

  106. Easther R, Lim EA (2006) Stochastic gravitational wave production after inflation. J Cosmol Astropart Phys 2006(04):010. https://doi.org/10.1088/1475-7516/2006/04/010

    Article  Google Scholar 

  107. El-Neaj YA, Alpigiani C, Amairi-Pyka S, Araújo H, Balaž A, Bassi A, Bathe-Peters L, Battelier B, Belić A, Bentine E et al (2020) Aedge: atomic experiment for dark matter and gravity exploration in space. EPJ Quant Technol 7(1). https://doi.org/10.1140/epjqt/s40507-020-0080-0

  108. ESA GOAT Committee (2016) The ESA–L3 gravitational wave mission- GOAT report. Technical report, ESA. https://www.cosmos.esa.int/documents/427239/653121/goat-final-rev1.pdf/5b27a845-1948-4c1e-9e38-67bf7156dfe4

    Google Scholar 

  109. Evans CR, Iben Icko J, Smarr L (1987) Degenerate Dwarf binaries as promising, detectable sources of gravitational radiation. ApJ 323:129. https://doi.org/10.1086/165812

    Article  ADS  Google Scholar 

  110. Faller JE, Bender PL (1984) A possible laser gravitational wave experiment in space. In: Precision measurement and fundamental constants II, pp 689–690

    Google Scholar 

  111. Farr WM, Fishbach M, Ye J, Holz D (2019) A future percent-level measurement of the hubble expansion at redshift 0.8 with Advanced LIGO. Astrophys J Lett 883:L42. https://doi.org/10.3847/2041-8213/ab4284. ArXiv:1908.09084

  112. Favata M (2009) Nonlinear gravitational-wave memory from binary black hole mergers. Astrophys J 696(2):L159–L162. https://doi.org/10.1088/0004-637x/696/2/l159

    Article  ADS  Google Scholar 

  113. Felder GN, Kofman L (2007) Nonlinear inflaton fragmentation after preheating. Phys Rev D 75(4). https://doi.org/10.1103/physrevd.75.043518

  114. Fishbach M et al (2019) A standard siren measurement of the hubble constant from GW170817 without the electromagnetic counterpart. Astrophys J 871(1):L13. https://doi.org/10.3847/2041-8213/aaf96e. ArXiv:1807.05667

  115. Flanagan EE, Hughes SA (1998) Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown. Phys Rev D 57(8):4535–4565. https://doi.org/10.1103/physrevd.57.4535

    Article  ADS  Google Scholar 

  116. Flauger R, Karnesis N, Nardini G, Pieroni M, Ricciardone A, Torrado J (2021) Improved reconstruction of a stochastic gravitational wave background with LISA. JCAP 01:059. https://doi.org/10.1088/1475-7516/2021/01/059

    Article  ADS  Google Scholar 

  117. Folkner WM, Hechler F, Sweetser TH, Vincent MA, Bender PL (1997) LISA orbit selection and stability. Class Quant Grav 14(6):1405–1410. https://doi.org/10.1088/0264-9381/14/6/003

    Article  ADS  Google Scholar 

  118. Folkner WM (2011) A non-drag-free gravitational wave mission architecture. Technical report, A mission concept white paper submitted to NASA SGO Study. https://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0003-Folkner.pdf

  119. Gair JR (2008) The black hole symphony: probing new physics using gravitational waves. Philos Trans R Soc Lond Ser A 366(1884):4365–4379. https://doi.org/10.1098/rsta.2008.0170

    ADS  MathSciNet  Google Scholar 

  120. Gair JR, Barack L, Creighton T, Cutler C, Larson SL, Phinney ES, Vallisneri M (2004) Event rate estimates for lisa extreme mass ratio capture sources. Class Quant Grav 21(20):S1595–S1606. https://doi.org/10.1088/0264-9381/21/20/003

    Article  ADS  MATH  Google Scholar 

  121. Gair JR, Feroz F, Babak S, Graff P, Hobson MP, Petiteau A, Porter EK (2010) Nested sampling as a tool for LISA data analysis. J Phys Conf Ser 228:012010. https://doi.org/10.1088/1742-6596/228/1/012010

    Article  Google Scholar 

  122. Gair JR, Li C, Mandel I (2008) Observable properties of orbits in exact bumpy spacetimes. Phys Rev D 77(2). https://doi.org/10.1103/physrevd.77.024035

  123. Gair JR, Mandel I, Miller MC, Volonteri M (2010) Exploring intermediate and massive black-hole binaries with the Einstein telescope. Gen Relat Grav 43(2):485–518. https://doi.org/10.1007/s10714-010-1104-3

    Article  ADS  Google Scholar 

  124. Gair JR, Tang C, Volonteri M (2010) Lisa extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys Rev D 81:104014. https://doi.org/10.1103/PhysRevD.81.104014

    Article  ADS  Google Scholar 

  125. Gair JR, Vallisneri M, Larson SL, Baker JG (2013) Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Rev Relat 16(1). https://doi.org/10.12942/lrr-2013-7

  126. Gerberding O, Diekmann C, Kullmann J, Tröbs M, Bykov I, Barke S, Brause NC, Esteban Delgado JJ, Schwarze TS, Reiche J, Danzmann K, Rasmussen T, Hansen TV, Enggaard A, Pedersen SM, Jennrich O, Suess M, Sodnik Z, Heinzel G (2015) Readout for intersatellite laser interferometry: measuring low frequency phase fluctuations of high-frequency signals with microradian precision. Rev Sci Instrum 86(7):074501. https://doi.org/10.1063/1.4927071

    Article  ADS  Google Scholar 

  127. Gerosa D, Ma S, Wong KWK, Berti E, O’Shaughnessy R, Chen Y, Belczynski K (2019) Multiband gravitational-wave event rates and stellar physics. Phys Rev D 99(10):103004. https://doi.org/10.1103/PhysRevD.99.103004

    Article  ADS  Google Scholar 

  128. Ghez AM, Salim S, Weinberg NN, Lu JR, Do T, Dunn JK, Matthews K, Morris MR, Yelda S, Becklin EE, Kremenek T, Milosavljevic M, Naiman J (2008) Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. ApJ 689(2):1044–1062. https://doi.org/10.1086/592738

    Article  ADS  Google Scholar 

  129. Ghosh A, Johnson-Mcdaniel NK, Ghosh A, Mishra CK, Ajith P, Del Pozzo W, Berry CPL, Nielsen AB, London L (2018) Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes. Class Quant Grav 35(1):014002. https://doi.org/10.1088/1361-6382/aa972e

    Article  ADS  Google Scholar 

  130. Gillessen S, Eisenhauer F, Trippe S, Alexander T, Genzel R, Martins F, Ott T (2009) Monitoring stellar orbits around the massive black hole in the galactic center. ApJ 692(2):1075–1109. https://doi.org/10.1088/0004-637X/692/2/1075

    Article  ADS  Google Scholar 

  131. Glampedakis K, Babak S (2006) Mapping spacetimes with lisa: inspiral of a test body in a “quasi-kerr” field. Class Quant Grav 23(12):4167–4188. https://doi.org/10.1088/0264-9381/23/12/013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  132. Gnocchi G, Maselli A, Abdelsalhin T, Giacobbo N, Mapelli M (2019) Bounding alternative theories of gravity with multiband GW observations. Phys Rev D 100(6). https://doi.org/10.1103/physrevd.100.064024

  133. Gravitational-Wave Community Science Team and Gravitational-Wave Core Team and Gravitational-Wave Science Task Force (2012) Gravitational-wave mission concept study – final report. Technical report, NASA. https://pcos.gsfc.nasa.gov/physpag/GW_Study_Rev3_Aug2012-Final.pdf

    Google Scholar 

  134. Greene JE, Strader J, Ho LC (2020) Intermediate-mass black holes. Annu Rev Astron Astrophys 58(1):257–312. https://doi.org/10.1146/annurev-astro-032620-021835

    Article  ADS  Google Scholar 

  135. Grote H, Stadnik YV (2019) Novel signatures of dark matter in laser-interferometric gravitational-wave detectors. Phys Rev Res 1:033187. https://doi.org/10.1103/PhysRevResearch.1.033187

    Article  Google Scholar 

  136. Hansen D, Yunes N, Yagi K (2015) Projected constraints on Lorentz-violating gravity with gravitational waves. Phys Rev D91(8):082003. https://doi.org/10.1103/PhysRevD.91.082003

    ADS  MathSciNet  Google Scholar 

  137. Hartwig O, Bayle JB (2020) Clock-jitter reduction in LISA time-delay interferometry combinations. arXiv e-prints arXiv:2005.02430

    Google Scholar 

  138. Heckman TM, Best PN (2014) The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. ARA&A 52:589–660. https://doi.org/10.1146/annurev-astro-081913-035722

    Article  ADS  Google Scholar 

  139. Hellings R (1993) SAGITTARIUS. Technical report, ESA M3 Proposal

    Google Scholar 

  140. Hellings R, Larson S, Jensen S, Fisher C, Benacquista M, Cornish N, Lang R (1998) A low-cost, high-performance space gravitational astronomy mission. Technical report, A mission concept white paper submitted to NASA SGO Study. https://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0007-Hellings.pdf

  141. Hils D, Bender PL (1995) Gradual approach to coalescence for compact stars orbiting massive black holes. ApJ 445:L7. https://doi.org/10.1086/187876

    Article  ADS  Google Scholar 

  142. Hils D, Bender PL, Webbink RF (1990) Gravitational radiation from the galaxy. ApJ 360:75. https://doi.org/10.1086/169098

    Article  ADS  Google Scholar 

  143. Hogan CJ (1986) Gravitational radiation from cosmological phase transitions. MNRAS 218:629–636. https://doi.org/10.1093/mnras/218.4.629

    Article  ADS  Google Scholar 

  144. Hogan CJ (2000) Gravitational waves from mesoscopic dynamics of the extra dimensions. Phys Rev Lett 85:2044–2047. https://doi.org/10.1103/PhysRevLett.85.2044

    Article  ADS  Google Scholar 

  145. Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl Sci Rev 4(5):685–686. https://doi.org/10.1093/nsr/nwx116

    Article  Google Scholar 

  146. Isleif KS, Bischof L, Ast S, Penkert D, Schwarze TS, Fernández Barranco G, Zwetz M, Veith S, Hennig JS, Tröbs M, Reiche J, Gerberding O, Danzmann K, Heinzel G (2018) Towards the LISA backlink: experiment design for comparing optical phase reference distribution systems. Class Quant Grav 35(8):085009. https://doi.org/10.1088/1361-6382/aaa879

    Article  ADS  Google Scholar 

  147. Islo K, Simon J, Burke-Spolaor S, Siemens X (2019) Prospects for memory detection with low-frequency gravitational wave detectors. arXiv e-prints arXiv:1906.11936

    Google Scholar 

  148. Ivanova N, Justham S, Chen X, De Marco O, Fryer CL, Gaburov E, Ge H, Glebbeek E, Han Z, Li XD, Lu G, Marsh T, Podsiadlowski P, Potter A, Soker N, Taam R, Tauris TM, van den Heuvel EPJ, Webbink RF (2013) Common envelope evolution: where we stand and how we can move forward. A&A 21:59. https://doi.org/10.1007/s00159-013-0059-2

    Google Scholar 

  149. Karnesis N, Lilley M, Petiteau A (2020) Assessing the detectability of a stochastic gravitational wave background with LISA, using an excess of power approach. Class Quant Grav 37(21):215017. https://doi.org/10.1088/1361-6382/abb637

    Article  ADS  Google Scholar 

  150. Kawamura S, Ando M, Seto N, Sato S, Musha M, Kawano I, Yokoyama J, Tanaka T, Ioka K, Akutsu T, Takashima T, Agatsuma K, Araya A, Aritomi N, Asada H, Chiba T, Eguchi S, Enoki M, Fujimoto MK, Fujita R, Futamase T, Harada T, Hayama K, Himemoto Y, Hiramatsu T, Hong FL, Hosokawa M, Ichiki K, Ikari S, Ishihara H, Ishikawa T, Itoh Y, Ito T, Iwaguchi S, Izumi K, Kanda N, Kanemura S, Kawazoe F, Kobayashi S, Kohri K, Kojima Y, Kokeyama K, Kotake K, Kuroyanagi S, Maeda Ki, Matsushita S, Michimura Y, Morimoto T, Mukohyama S, Nagano K, Nagano S, Naito T, Nakamura K, Nakamura T, Nakano H, Nakao K, Nakasuka S, Nakayama Y, Nakazawa K, Nishizawa A, Ohkawa M, Oohara K, Sago N, Saijo M, Sakagami M, Sakai Si, Sato T, Shibata M, Shinkai H, Shoda A, Somiya K, Sotani H, Takahashi R, Takahashi H, Akiteru T, Taniguchi K, Taruya A, Tsubono K, Tsujikawa S, Ueda A, Ueda Ki, Watanabe I, Yagi K, Yamada R, Yokoyama S, Yoo CM, Zhu ZH (2021) Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress Theor Exp Phys 2021(5). https://doi.org/10.1093/ptep/ptab019. 05A105

  151. Kesden M, Gair J, Kamionkowski M (2005) Gravitational-wave signature of an inspiral into a supermassive horizonless object. Phys Rev D 71(4). https://doi.org/10.1103/physrevd.71.044015

  152. Khlebnikov S, Tkachev I (1997) Relic gravitational waves produced after preheating. Phys Rev D 56(2):653–660. https://doi.org/10.1103/physrevd.56.653

    Article  ADS  Google Scholar 

  153. Khodnevych V, Di Pace S, Vinet JY, Dinu-Jaeger N, Lintz M (2019) Study of the coherent perturbation of a Michelson interferometer due to the return from a scattering surface. In: International conference on space optics — ICSO 2018, Society of photo-optical instrumentation engineers (spie) conference series, vol 11180, p 111807T. https://doi.org/10.1117/12.2536200

  154. Klein A, Barausse E, Sesana A, Petiteau A, Berti E, Babak S, Gair J, Aoudia S, Hinder I, Ohme F et al (2016) Science with the space-based interferometer elisa: supermassive black hole binaries. Phys Rev D 93(2). https://doi.org/10.1103/physrevd.93.024003

  155. Kormendy J, Ho LC (2013) Coevolution (or not) of supermassive black holes and host galaxies. Ann Rev Astron Astrophys 51:511–653. https://doi.org/10.1146/annurev-astro-082708-101811

    Article  ADS  Google Scholar 

  156. Korol V, Rossi EM, Barausse E (2019) A multimessenger study of the Milky Way’s stellar disc and bulge with LISA, Gaia, and LSST. MNRAS 483(4):5518–5533. https://doi.org/10.1093/mnras/sty3440

    Article  ADS  Google Scholar 

  157. Kosowsky A, Mack A, Kahniashvili T (2002) Gravitational radiation from cosmological turbulence. Phys Rev D 66(2). https://doi.org/10.1103/physrevd.66.024030

  158. Kupfer T, Korol V, Shah S, Nelemans G, Marsh TR, Ramsay G, Groot PJ, Steeghs DTH, Rossi EM (2018) LISA verification binaries with updated distances from Gaia Data Release 2. MNRAS 480(1):302–309. https://doi.org/10.1093/mnras/sty1545

    Article  ADS  Google Scholar 

  159. Kyutoku K, Seto N: (2017) Gravitational-wave cosmography with LISA and the Hubble tension. Phys Rev D95(8):083525. https://doi.org/10.1103/PhysRevD.95.083525

    ADS  Google Scholar 

  160. Lamberts A, Blunt S, Littenberg TB, Garrison-Kimmel S, Kupfer T, Sanderson RE (2019) Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations. MNRAS 490(4):5888–5903. https://doi.org/10.1093/mnras/stz2834

    Article  ADS  Google Scholar 

  161. Levin Y (2007) Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band. MNRAS 374(2):515–524. https://doi.org/10.1111/j.1365-2966.2006.11155.x

    Article  ADS  Google Scholar 

  162. Li C, Lovelace G (2008) Generalization of Ryan’s theorem: probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals. Phys Rev D 77:064022. https://doi.org/10.1103/PhysRevD.77.064022

    Article  ADS  Google Scholar 

  163. Li G, Yi Z, Heinzel G, Rüdiger A, Jennrich O, Wang L, Xia Y, Zeng F, Zhao H (2008) Methods for orbit optimization for the LISA gravitational wave observatory. Int J Mod Phys D 17(7):1021–1042. https://doi.org/10.1142/S021827180801267X

    Article  ADS  MATH  Google Scholar 

  164. Liebling SL, Palenzuela C (2012) Dynamical boson stars. Living Rev Relat 15:6. https://doi.org/10.12942/lrr-2012-6, https://doi.org/10.1007/s41114-017-0007-y. [Living Rev Relat 20(1):5 (2017)]

  165. LISA Science Study Team (2018) LISA science requirements document, ESA-L3-EST-SCI-RS-001. Technical Report. 1.0, ESA. https://www.cosmos.esa.int/web/lisa/lisa-documents/

  166. Littenberg TB, Larson SL, Nelemans G, Cornish NJ (2013) Prospects for observing ultracompact binaries with space-based gravitational wave interferometers and optical telescopes. MNRAS 429(3):2361–2365. https://doi.org/10.1093/mnras/sts507

    Article  ADS  Google Scholar 

  167. Luo J et al (2016) TianQin: a space-borne gravitational wave detector. Class Quant Grav 33(3):035010. https://doi.org/10.1088/0264-9381/33/3/035010

    Article  ADS  Google Scholar 

  168. MacLeod CL, Hogan CJ (2008) Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information. Phys Rev D77:043512. https://doi.org/10.1103/PhysRevD.77.043512

    ADS  Google Scholar 

  169. Maguire K, Eracleous M, Jonker PG, MacLeod M, Rosswog S (2020) Tidal disruptions of white dwarfs: theoretical models and observational prospects. Space Sci Rev 216(3). https://doi.org/10.1007/s11214-020-00661-2

  170. Marsh TR (2011) Double white dwarfs and lisa. Class Quant Grav 28(9):094019. https://doi.org/10.1088/0264-9381/28/9/094019

    Article  ADS  MATH  Google Scholar 

  171. Maselli A, Pani P, Gualtieri L, Berti E (2020) Parametrized ringdown spin expansion coefficients: a data-analysis framework for black-hole spectroscopy with multiple events. Phys Rev D 101(2). https://doi.org/10.1103/physrevd.101.024043

  172. Matsuoka Y et al (2018) Subaru high-z exploration of low-luminosity quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z < 6.8. Publ Astron Soc Jpn 70(SP1):S35. https://doi.org/10.1093/pasj/psx046

  173. Mavalvala N, Sigg D, Shoemaker D (1998) Experimental test of an alignment-sensing scheme for a gravitational-wave interferometer. Appl Opt 37(33):7743–7746. https://doi.org/10.1364/AO.37.007743

    Article  ADS  Google Scholar 

  174. McGee S, Sesana A, Vecchio A (2020) Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations. Nat Astron 4:26–31. https://doi.org/10.1038/s41550-019-0969-7

    Article  ADS  Google Scholar 

  175. McManus R, Berti E, Macedo CF, Kimura M, Maselli A, Cardoso V (2019) Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes. Phys Rev D 100(4). https://doi.org/10.1103/physrevd.100.044061

  176. McWilliams ST (2011) Geostationary antenna for disturbance-free laser interferometry (GADFLI). arXiv e-prints arXiv:1111.3708

    Google Scholar 

  177. Miller MC, Davies MB (2012) An upper limit to the velocity dispersion of relaxed stellar systems without massive black holes. ApJ 755(1):81. https://doi.org/10.1088/0004-637X/755/1/81

    Article  ADS  Google Scholar 

  178. Miller MC, Freitag M, Hamilton DP, Lauburg VM (2005) Binary encounters with supermassive black holes: zero-eccentricity lisa events. Astrophys J 631(2):L117–L120. https://doi.org/10.1086/497335

    Article  ADS  Google Scholar 

  179. Mirshekari S, Yunes N, Will CM (2012) Constraining generic Lorentz violation and the speed of the graviton with gravitational waves. Phys Rev D85:024041. https://doi.org/10.1103/PhysRevD.85.024041

    ADS  Google Scholar 

  180. Mitryk SJ, Mueller G, Sanjuan J (2012) Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects. Phys Rev D 86(12):122006. https://doi.org/10.1103/PhysRevD.86.122006

    Article  ADS  Google Scholar 

  181. Moore CJ, Gerosa D, Klein A (2019) Are stellar-mass black-hole binaries too quiet for LISA? MNRAS 488(1):L94–L98. https://doi.org/10.1093/mnrasl/slz104

    Article  ADS  Google Scholar 

  182. Muñoz DJ, Miranda R, Lai D (2019) Hydrodynamics of circumbinary accretion: angular momentum transfer and binary orbital evolution. ApJ 871(1):84. https://doi.org/10.3847/1538-4357/aaf867

    Article  ADS  Google Scholar 

  183. Nagano K, Fujita T, Michimura Y, Obata I (2019) Axion dark matter search with interferometric gravitational wave detectors. Phys Rev Lett 123(11):111301. https://doi.org/10.1103/PhysRevLett.123.111301

    Article  ADS  Google Scholar 

  184. Nelemans G, Portegies Zwart SF, Verbunt F, Yungelson LR (2001) Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars. A&A 368:939–949. https://doi.org/10.1051/0004-6361:20010049

    Google Scholar 

  185. Nishizawa A, Berti E, Klein A, Sesana A (2016) eLISA eccentricity measurements as tracers of binary black hole formation. Phys Rev D 94:064020. https://doi.org/10.1103/PhysRevD.94.064020

    Article  ADS  Google Scholar 

  186. Nishizawa A, Sesana A, Berti E, Klein A (2016) Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements. Mon Not R Astron Soc 465(4):4375–4380. https://doi.org/10.1093/mnras/stw2993

    Article  ADS  Google Scholar 

  187. Nissanke S, Vallisneri M, Nelemans G, Prince TA (2012) Gravitational-wave emission from compact galactic binaries. Astrophys J 758(2):131. https://doi.org/10.1088/0004-637x/758/2/131

    Article  ADS  Google Scholar 

  188. Perkins SE, Yunes N, Berti E (2020) Probing fundamental physics with gravitational waves: the next generation

    Google Scholar 

  189. Peters PC (1964) Gravitational radiation and the motion of two point masses. Phys Rev 136:B1224–B1232. https://doi.org/10.1103/PhysRev.136.B1224

    Article  ADS  MATH  Google Scholar 

  190. Petiteau A, Babak S, Sesana A (2011) Constraining the dark energy equation of state using LISA observations of spinning Massive Black Hole binaries. Astrophys J 732:82. https://doi.org/10.1088/0004-637X/732/2/82

    Article  ADS  Google Scholar 

  191. Petiteau A, Shang Y, Babak S, Feroz F (2010) Search for spinning black hole binaries in mock LISA data using a genetic algorithm. Phys Rev D 81(10):104016. https://doi.org/10.1103/PhysRevD.81.104016

    Article  ADS  Google Scholar 

  192. Prince TA, Tinto M, Larson SL, Armstrong JW (2002) LISA optimal sensitivity. Phys Rev D 66(12):122002. https://doi.org/10.1103/PhysRevD.66.122002

    Article  ADS  Google Scholar 

  193. Randall L, Servant G (2007) Gravitational waves from warped spacetime. J High Energy Phys 2007(05):054. https://doi.org/10.1088/1126-6708/2007/05/054

    Article  MathSciNet  Google Scholar 

  194. Riess AG, Casertano S, Yuan W, Macri LM, Scolnic D (2019) Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond λcdm. Astrophys J 876(1):85. https://doi.org/10.3847/1538-4357/ab1422

    Article  ADS  Google Scholar 

  195. Riess AG et al (2016) A 2.4% determination of the local value of the Hubble constant. Astrophys J 826(1):56. https://doi.org/10.3847/0004-637X/826/1/56. ArXiv:1604.01424

  196. Ryan FD (1997) Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral. Phys Rev D 56:1845–1855. https://doi.org/10.1103/PhysRevD.56.1845

    Article  ADS  Google Scholar 

  197. Babak S, Hewitson M, Petiteau A (2021) LISA sensitivity and SNR calculations (LISA-LCST-SGS-TN-001_v1.0). Technical report, ESA, LISA Consortium . https://atrium.in2p3.fr/cd8ad323-b20f-4afd-93e8-992f911f56bd

  198. Sanjuán J, Korytov D, Mueller G, Spannagel R, Braxmaier C, Preston A, Livas J (2012) Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors. Rev Sci Instrum 83(11):116107–116107-3. https://doi.org/10.1063/1.4767247

  199. Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323:310–311. https://doi.org/10.1038/323310a0

    Article  ADS  Google Scholar 

  200. Sedda MA, Berry CPL, Jani K, Amaro-Seoane P, Auclair P, Baird J, Baker T, Berti E, Breivik K, Burrows A et al (2020) The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Class Quant Grav 37(21):215011. https://doi.org/10.1088/1361-6382/abb5c1

    Article  ADS  Google Scholar 

  201. Sesana A (2016) Prospects for multiband gravitational-wave astronomy after gw150914. Phys Rev Lett 116:231102. https://doi.org/10.1103/PhysRevLett.116.231102

    Article  ADS  Google Scholar 

  202. Sesana A, Gair J, Berti E, Volonteri M (2011) Reconstructing the massive black hole cosmic history through gravitational waves. Phys Rev D 83(4). https://doi.org/10.1103/physrevd.83.044036

  203. Sesana A, Korsakova N, Sedda MA, Baibhav V, Barausse E, Barke S, Berti E, Bonetti M, Capelo PR, Caprini C, Garcia-Bellido J, Haiman Z, Jani K, Jennrich O, Johansson P, Khan FM, Korol V, Lamberts A, Lupi A, Mangiagli A, Mayer L, Nardini G, Pacucci F, Petiteau A, Raccanelli A, Rajendran S, Regan J, Shao L, Spallicci A, Tamanini N, Volonteri M, Warburton N, Wong K, Zumalacarregui M (2019) Unveiling the gravitational universe at μ-hz frequencies

    Google Scholar 

  204. Sesana A, Vecchio A, Eracleous M, Sigurdsson S (2008) Observing white dwarfs orbiting massive black holes in the gravitational wave and electro-magnetic window. Mon Not R Astron Soc 391(2):718–726. https://doi.org/10.1111/j.1365-2966.2008.13904.x

    Article  ADS  Google Scholar 

  205. Shaddock D, Ware B, Halverson PG, Spero RE, Klipstein B (2006) Overview of the LISA phasemeter. In: Merkovitz SM, Livas JC (eds) Laser interferometer space antenna: 6th international LISA symposium. American institute of physics conference series, vol 873, pp 654–660. https://doi.org/10.1063/1.2405113

    Google Scholar 

  206. Shah S, Nelemans G (2014) Measuring tides and binary parameters from gravitational wave data and eclipsing timings of detached white dwarf binaries. ApJ 791(2):76. https://doi.org/10.1088/0004-637X/791/2/76

    Article  ADS  Google Scholar 

  207. Sigurdsson S, Rees MJ (1997) Capture of stellar mass compact objects by massive black holes in galactic cusps. MNRAS 284(2):318–326. https://doi.org/10.1093/mnras/284.2.318

    Article  ADS  Google Scholar 

  208. Soares-Santos M et al (2019) First measurement of the Hubble constant from a dark standard siren using the dark energy survey galaxies and the LIGO/Virgo binary–black-hole merger GW170814. Astrophys J 876(1):L7. https://doi.org/10.3847/2041-8213/ab14f1. ArXiv:1901.01540

  209. Spector A, Mueller G (2012) Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors. Class Quant Grav 29(20):205005. https://doi.org/10.1088/0264-9381/29/20/205005

    Article  ADS  Google Scholar 

  210. Stroeer A, Vecchio A (2006) The LISA verification binaries. Class Quant Grav 23(19):S809–S817. https://doi.org/10.1088/0264-9381/23/19/S19

    Article  ADS  MATH  Google Scholar 

  211. Tahura S, Yagi K (2018) Parameterized post-Einsteinian gravitational waveforms in various modified theories of gravity. Phys Rev D98(8):084042. https://doi.org/10.1103/PhysRevD.98.084042

    ADS  Google Scholar 

  212. Tanabashi M et al (2018) Review of particle physics. Phys Rev D98(3):030001. https://doi.org/10.1103/PhysRevD.98.030001

    ADS  Google Scholar 

  213. Taylor SR, Gair JR (2012) Cosmology with the lights off: standard sirens in the Einstein Telescope era. Phys Rev D86:023502. https://doi.org/10.1103/PhysRevD.86.023502

    ADS  Google Scholar 

  214. Taylor SR, Gair JR, Mandel I (2012) Cosmology using advanced gravitational-wave detectors alone. Phys Rev D 85(2). https://doi.org/10.1103/physrevd.85.023535

  215. Tinto M, Armstrong JW (1999) Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation. Phys Rev D 59(10):102003. https://doi.org/10.1103/PhysRevD.59.102003

    Article  ADS  Google Scholar 

  216. Tinto M, de Araujo JCN, Aguiar OD, da Silva Alves E (2011) A geostationary gravitational wave interferometer (GEOGRAWI). arXiv e-prints arXiv:1111.2576

    Google Scholar 

  217. Tinto M, Dhurandhar SV (2021) Time-delay interferometry. Living Rev Relat 24(1):1. https://doi.org/10.1007/s41114-020-00029-6

    Article  ADS  MATH  Google Scholar 

  218. Tinto M, da Silva Alves ME (2010) LISA sensitivities to gravitational waves from relativistic metric theories of gravity. Phys Rev D82:122003. https://doi.org/10.1103/PhysRevD.82.122003

    ADS  Google Scholar 

  219. Toubiana A, Sberna L, Caputo A, Cusin G, Marsat S, Jani K, Babak S, Barausse E, Caprini C, Pani P, Sesana A, Tamanini N (2020) Detectable environmental effects in GW190521-like black-hole binaries with LISA. arXiv e-prints arXiv:2010.06056

    Google Scholar 

  220. Vallisneri M (2005) Geometric time delay interferometry. Phys Rev D 72(4):042003. https://doi.org/10.1103/PhysRevD.72.042003

    Article  ADS  Google Scholar 

  221. Vallisneri M, Bayle JB, Babak S, Petiteau A (2020) TDI-infinity: time-delay interferometry without delays. arXiv e-prints arXiv:2008.12343

    Google Scholar 

  222. Vallisneri M, Data Challenge taskforce ML (2008) The Mock LISA data challenges: status, achievements, and prospects. In: AAS/high energy astrophysics division, vol 10, p 15.06

    Google Scholar 

  223. Vincent MA, Bender PL (1988) The orbital mechanics of a space-borne gravitational wave experiment. In: Astrodynamics, vol 1987, p 1346

    ADS  Google Scholar 

  224. Volonteri M, Natarajan P (2009) Journey to the mBH −σ relation: the fate of low-mass black holes in the universe. Mon Not R Astron Soc 400(4):1911–1918. https://doi.org/10.1111/j.1365-2966.2009.15577.x

    Article  ADS  Google Scholar 

  225. Wang F, Yang J, Fan X, Hennawi JF, Barth AJ, Banados E, Bian F, Boutsia K, Connor T, Davies FB, Decarli R, Eilers AC, Farina EP, Green R, Jiang L, Li JT, Mazzucchelli C, Nanni R, Schindler JT, Venemans B, Walter F, Wu XB, Yue M (2021) A luminous quasar at redshift 7.642. ApJ 907(1):L1. https://doi.org/10.3847/2041-8213/abd8c6

  226. Weiss R, Bender PL, Misner CW, Pound RV (1976) Report of the sub-panel on relativity and gravitation. Technical report, Management and Operations Working Group for Shuttle Astronomy, NASA, Washington, DC. https://emvogil-3.mit.edu/$sim$weiss/documents/nasa1975.pdf

  227. Westerweck J, Nielsen A, Fischer-Birnholtz O, Cabero M, Capano C, Dent T, Krishnan B, Meadors G, Nitz AH (2018) Low significance of evidence for black hole echoes in gravitational wave data. Phys Rev D97(12):124037. https://doi.org/10.1103/PhysRevD.97.124037

    ADS  Google Scholar 

  228. Will CM (1998) Bounding the mass of the graviton using gravitational wave observations of inspiralling compact binaries. Phys Rev D57:2061–2068. https://doi.org/10.1103/PhysRevD.57.2061

    ADS  Google Scholar 

  229. Witten E (1984) Cosmic separation of phases. Phys Rev D 30:272–285. https://doi.org/10.1103/PhysRevD.30.272

    Article  ADS  Google Scholar 

  230. Yagi K, Stein LC (2016) Black hole based tests of general relativity. Class Quant Grav 33(5):054001. https://doi.org/10.1088/0264-9381/33/5/054001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  231. Yagi K, Stein LC, Yunes N, Tanaka T (2012) Post-Newtonian, quasi-circular binary inspirals in quadratic modified gravity. Phys Rev D85:064022. https://doi.org/10.1103/PhysRevD.93.029902, https://doi.org/10.1103/PhysRevD.85.064022. [Erratum: Phys Rev D93(2):029902 (2016)]

  232. Yagi K, Tanahashi N, Tanaka T (2011) Probing the size of extra dimension with gravitational wave astronomy. Phys Rev D83:084036. https://doi.org/10.1103/PhysRevD.83.084036

    ADS  Google Scholar 

  233. Yagi K, Tanaka T (2010) Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA. Phys Rev D81:064008. https://doi.org/10.1103/PhysRevD.81.109902, https://doi.org/10.1103/PhysRevD.81.064008. [Erratum: Phys Rev D81:109902 (2010)]

  234. Yagi K, Yunes N, Tanaka T (2012) Gravitational waves from quasi-circular black hole binaries in dynamical chern-simons gravity. Phys Rev Lett 109:251105. https://doi.org/10.1103/PhysRevLett.116.169902, https://doi.org/10.1103/PhysRevLett.109.251105, https://doi.org/10.1103/PhysRevLett.124.029901. [Erratum: Phys Rev Lett 116(16):169902 (2016)]

  235. Yunes N, Coleman Miller M, Thornburg J (2011) Effect of massive perturbers on extreme mass-ratio inspiral waveforms. Phys Rev D 83:044030. https://doi.org/10.1103/PhysRevD.83.044030

    Article  ADS  Google Scholar 

  236. Yunes N, Pretorius F (2009) Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-einsteinian framework. Phys Rev D 80(12). https://doi.org/10.1103/physrevd.80.122003

  237. Yunes N, Pretorius F, Spergel D (2010) Constraining the evolutionary history of Newton’s constant with gravitational wave observations. Phys Rev D81:064018. https://doi.org/10.1103/PhysRevD.81.064018

    ADS  Google Scholar 

  238. Zhang C, Zhao X, Wang A, Wang B, Yagi K, Yunes N, Zhao W, Zhu T (2020) Gravitational waves from the quasicircular inspiral of compact binaries in Einstein-aether theory. Phys Rev D101(4):044002. https://doi.org/10.1103/PhysRevD.101.044002

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Gair .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gair, J., Hewitson, M., Petiteau, A., Mueller, G. (2021). Space-Based Gravitational Wave Observatories. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_3-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics