Skip to main content
Log in

The IR stability of de Sitter QFT: physical initial conditions

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This work uses Lorentz-signature in-in perturbation theory to analyze the late-time behavior of correlators in time-dependent interacting massive scalar field theory in de Sitter space. We study a scenario recently considered by Krotov and Polyakov in which the coupling g turns on smoothly at finite time, starting from g = 0 in the far past where the state is taken to be the (free) Bunch–Davies vacuum. Our main result is that the resulting correlators (which we compute at the one-loop level) approach those of the interacting Hartle–Hawking state at late times. We argue that similar results should hold for other physically-motivated choices of initial conditions. This behavior is to be expected from recent quantum “no hair” theorems for interacting massive scalar field theory in de Sitter space which established similar results to all orders in perturbation theory for a dense set of states in the Hilbert space. Our current work (1) indicates that physically motivated initial conditions lie in this dense set, (2) provides a Lorentz-signature counter-part to the Euclidean techniques used to prove such theorems, and (3) provides an explicit example of the relevant renormalization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collaboration WMAP, Komatsu E. et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009) [ar-Xiv:0803.0547]

    Article  ADS  Google Scholar 

  2. Weinberg S.: Quantum contributions to cosmological correlations. Phys. Rev. D72, 043514 (2005) [hep-th/0506236]

    MathSciNet  ADS  Google Scholar 

  3. Weinberg S.: Quantum contributions to cosmological correlations. II: can these corrections become large?. Phys. Rev. D74, 023508 (2006) [hep-th/0605244]

    MathSciNet  ADS  Google Scholar 

  4. Seery D., Lidsey J.E.: Primordial non-gaussianities in single field inflation. JCAP 0506, 003 (2005) [astro-ph/0503692]

    ADS  Google Scholar 

  5. Seery D.: One-loop corrections to a scalar field during inflation. JCAP 0711, 025 (2007) [arXiv:0707.3377]

    ADS  Google Scholar 

  6. Cheung C., Creminelli P., Fitzpatrick A.L., Kaplan J., Senatore L.: The effective field theory of inflation. JHEP 03, 014 (2008) [arXiv:0709.0293]

    Article  MathSciNet  ADS  Google Scholar 

  7. Senatore L., Zaldarriaga M.: On loops in inflation. J. High Energy Phys. 2010, 1–55 (2010) [arXiv:0912.2734]

    Article  Google Scholar 

  8. Seery D.: Infrared effects in inflationary correlation functions. Class. Quantum Gravit. 27(12), 124005 (2010) [arXiv:1005.1649]

    Article  MathSciNet  ADS  Google Scholar 

  9. Giddings S.B., Sloth M.S.: Semiclassical relations and IR effects in de Sitter and slow-roll space-times. J. Cosmol. Astropart. Phys. 2011(01), 023 (2011) [arXiv:1005.1056]

    Article  Google Scholar 

  10. Giddings, S.B., Sloth, M.S.: Cosmological observables, IR growth of fluctuations, and scale-dependent anisotropies [arXiv:1104.0002]

  11. Chialva, D., Mazumdar, A.: Eliminating infrared divergences in an inflationary cosmology [arXiv:1103.1312]

  12. Bousso R.: Holographic probabilities in eternal inflation. Phys. Rev. Lett. 97, 191302 (2006)

    Article  ADS  Google Scholar 

  13. Guth A.H.: Eternal inflation and its implications. J. Phys. A Math. Theor. 40(25), 6811 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hartle J., Hawking S.W., Hertog T.: Local observation in eternal Inflation. Phys. Rev. Lett. 106, 141302 (2011) [arXiv:1009.2525]

    Article  ADS  Google Scholar 

  15. Seery D., Lidsey J.E.: Non-Gaussian inflationary perturbations from the dS/CFT correspondence. JCAP 0606, 001 (2006) [astro-ph/0604209]

    ADS  Google Scholar 

  16. Anninos D., Hartman T.: Holography at an extremal De Sitter horizon. JHEP 03, 096 (2010) [arXiv:0910.4587]

    Article  ADS  Google Scholar 

  17. Anninos D., Anous T.: A de Sitter Hoedown. JHEP 08, 131 (2010) [arXiv:1002.1717]

    Article  MathSciNet  ADS  Google Scholar 

  18. Anninos, D., de Buyl, S., Detournay, S.: Holography For a De Sitter-Esque Geometry [arXiv:1102.3178]

  19. Harlow, D., Stanford, D.: Operator dictionaries and wave functions in AdS/CFT and dS/CFT [arXiv:1104.2621]

  20. Witten, E.: Quantum gravity in de Sitter space [hep-th/0106109]

  21. Strominger A.: The dS/CFT correspondence. JHEP 10, 034 (2001) [hep-th/0106113]

    Article  MathSciNet  ADS  Google Scholar 

  22. Nachtmann O.: Dynamishe Stabilität im de-Sitter-Raum, Sitz. Ber. Ösk. Ak. d. Wiss. II 176, 363 (1968)

    Google Scholar 

  23. Myhrvold N.P.: Runaway particle production in de Sitter space. Phys. Rev. D28, 2439 (1983)

    MathSciNet  ADS  Google Scholar 

  24. Hu B.L., O’Connor D.J.: Infrared behavior and finite size effects in inflationary cosmology. Phys. Rev. Lett. 56, 1613–1616 (1986)

    Article  ADS  Google Scholar 

  25. Hu B.L., O’Connor D.J.: Symmetry behavior in curved space-time: finite size effect and dimensional reduction. Phys. Rev. D36, 1701 (1987)

    MathSciNet  ADS  Google Scholar 

  26. Boyanovsky D., Holman R., Prem Kumar S.: Inflaton decay in De Sitter spacetime. Phys. Rev. D56, 1958–1972 (1997) [hep-ph/9606208]

    ADS  Google Scholar 

  27. Bros J., Epstein H., Moschella U.: Lifetime of a massive particle in a de Sitter universe. JCAP 0802, 003 (2008) [hep-th/0612184]

    ADS  Google Scholar 

  28. Polyakov A.M.: De Sitter space and eternity. Nucl. Phys. B797(1–2), 199–217 (2008) [arXiv:0709.2899]

    MathSciNet  ADS  Google Scholar 

  29. Akhmedov E.T., Buividovich P.V.: Interacting field theories in de Sitter space are non-Unitary. Phys. Rev. D78, 104005 (2008) [arXiv:0808.4106]

    MathSciNet  ADS  Google Scholar 

  30. Higuchi A.: Tree-level vacuum instability in an interacting field theory in de Sitter spacetime. Class. Quant. Gravit. 26, 072001 (2009) [arXiv:0809.1255]

    Article  MathSciNet  ADS  Google Scholar 

  31. Higuchi A.: Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture. Class. Quant. Gravit. 26, 072001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. Higuchi A., Cheong L.Y.: A conformally coupled massive scalar field in the de sitter expanding universe with the mass term treated as a perturbation. Class. Quantum Gravit. 26(13), 135019 (2009) [arXiv:0903.3881]

    Article  MathSciNet  ADS  Google Scholar 

  33. Akhmedov E.T.: Real or imaginary? (On pair creation in de Sitter space). Mod. Phys. Lett. A 25(33), 2815–2823 (2009) [arXiv:0909.3722]

    Article  MathSciNet  ADS  Google Scholar 

  34. Polyakov A.M.: Decay of vacuum energy. Nucl. Phys. B834, 316–329 (2010) [arXiv:0912.5503]

    Article  MathSciNet  ADS  Google Scholar 

  35. Burgess C.P., Holman R., Leblond L., Shandera S.: Breakdown of semiclassical methods in de Sitter space. J. Cosmol. Astropart. Phys. 2010(10), 017 (2010) [arXiv:1005.3551]

    Article  MathSciNet  ADS  Google Scholar 

  36. Marolf, D., Morrison, I.A.: The IR stability of de Sitter: loop corrections to scalar propagators. Phys. Rev. D 82, 105032 (Nov, 2010) [arXiv:1006.0035]

  37. Rajaraman A., Kumar J., Leblond L.: Constructing infrared finite propagators in inflating space-time. Phys. Rev. D82, 023525 (2010) [arXiv:1002.4214]

    ADS  Google Scholar 

  38. Youssef, A.: Infrared behavior and gauge artifacts in de Sitter spacetime. I. The photon field [arXiv:1011.3755]

  39. Boyanovsky, D., Holman, R.: On the perturbative stability of quantum field theories in de Sitter space [arXiv:1103.4648]

  40. Hollands, S.: Correlators, Feynman diagrams, and quantum no-hair in de Sitter spacetime [arXiv:1010.5367]

  41. Marolf, D., Morrison, I.A.: The IR stability of de Sitter QFT: results at all orders. Phys. Rev. D. (Submitted, 2010) [arXiv:1010.5327]

  42. Krotov, D., Polyakov, A.M.: Infrared sensitivity of unstable vacua. Nucl. Phys. B (In press, 2011) [arXiv:1012.2107]

  43. Hartle J.B., Hawking S.W.: Path-integral derivation of black hole radiance. Phys. Rev. D13, 2188–2203 (1976)

    ADS  Google Scholar 

  44. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space–times: analytic wave front sets and reeh–schlieder theorems. J. Math. Phys. 43(11), 5514–5530 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Shlaer, B.: Stability in and of de Sitter space [arXiv:0911.3142]

  46. Allen B., Jacobson T.: Vector two point functions in maximally symmetric spaces. Commun. Math. Phys. 103, 669 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Tsamis N.C., Woodard R.P.: A maximally symmetric vector propagator. J. Math. Phys. 48, 052306 (2007) [gr-qc/0608069]

    Article  MathSciNet  ADS  Google Scholar 

  48. Tsamis N.C., Woodard R.P.: Relaxing the cosmological constant. Phys. Lett. B301, 351–357 (1993)

    ADS  Google Scholar 

  49. Tsamis N.C., Woodard R.P.: Strong infrared effects in quantum gravity. Ann. Phys. 238, 1–82 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  50. Mottola E., Vaulin R.: Macroscopic effects of the quantum trace anomaly. Phys. Rev D74, 064004 (2006) [gr-qc/0604051]

    ADS  Google Scholar 

  51. Antoniadis I., Mazur P.O., Mottola E.: Cosmological dark energy: prospects for a dynamical theory. New J. Phys. 9, 11 (2007) [gr-qc/0612068]

    Article  MathSciNet  ADS  Google Scholar 

  52. Garriga J., Tanaka T.: Can infrared gravitons screen Λ?. Phys. Rev. D77, 024021 (2008) [arXiv:0706.0295]

    ADS  Google Scholar 

  53. Tsamis N.C., Woodard R.P.: Reply to ‘Can infrared gravitons screen Λ?’. Phys. Rev. D78, 028501 (2008) [arXiv:0708.2004]

    MathSciNet  ADS  Google Scholar 

  54. Urakawa Y., Tanaka T.: Infrared divergence does not affect the gauge-invariant curvature perturbation. Phys. Rev. D82, 121301 (2010)

    ADS  Google Scholar 

  55. Tsamis, N.C., Woodard, R.P.: A gravitational mechanism for cosmological screening [arXiv:1103.5134]

  56. Allen B.: Vacuum states in de Sitter space. Phys. Rev. D32, 3136 (1985)

    ADS  Google Scholar 

  57. Birrell N.D., Davies P.C.W.: Quantum Fields in Curved Space, pp. 340. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  58. Marolf D., Morrison I.A.: Group averaging for de Sitter free fields. Class. Quant. Gravit. 26(23), 235003 (2009) [arXiv:0810.5163]

    Article  MathSciNet  ADS  Google Scholar 

  59. Higuchi, A., Marolf, D., Morrison, I.A.: On the equivalence between euclidean and In-In formalisms in de Sitter QFT. Phys. Rev. D. 83, 084029 (Apr, 2011) [arXiv:1012.3415]

  60. Schwinger J.S.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Keldysh L.V.: Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515–1527 (1964)

    Google Scholar 

  62. Jordan R.D.: Effective field equations for expectation values. Phys. Rev. D33, 444–454 (1986)

    ADS  Google Scholar 

  63. Paz J.P.: Anisotropy dissipation in the early universe: finite temperature effects reexamined. Phys. Rev. D41, 1054–1066 (1990)

    ADS  Google Scholar 

  64. Vilkovisky G.A.: Expectation values and vacuum currents of quantum fields. Lect. Notes Phys. 737, 729–784 (2008) [arXiv:0712.3379]

    Article  MathSciNet  ADS  Google Scholar 

  65. Sasaki M., Suzuki H., Yamamoto K., Yokoyama J.: Superexpansionary divergence: breakdown of perturbative quantum field theory in space-time with accelerated expansion. Class. Quant. Grav. 10, L55–L60 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  66. Bogoliubov N., Shirkov D.: Introduction to the Theory of Quantized Fields. Wiley, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Marolf.

Additional information

This article is dedicated to Joshua Goldberg, with whom one of the authors (DM) enjoyed discussing all manner of gravitational physics during his time at Syracuse University. The article reflects Josh’s continued emphasis on understanding not only the mathematics of a given problem, but also the physics, and in particular in verifying that a given mathematical theorem is indeed relevant to the physical problem at hand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marolf, D., Morrison, I.A. The IR stability of de Sitter QFT: physical initial conditions. Gen Relativ Gravit 43, 3497–3530 (2011). https://doi.org/10.1007/s10714-011-1233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1233-3

Keywords

Navigation