Skip to main content
Log in

Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen’s weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen’s WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen’s WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen’s WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bachrach R (2015) Uncertainty and nonuniqueness in linearized AVAZ for orthorhombic media. Lead Edge 34:1048–1056

    Article  Google Scholar 

  • Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. Geophysics 67:4427–4440

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2000) Estimation of fracture parameters from reflection seismic data—part II: fractured models with orthorhombic symmetry. Geophysics 65:1803–1817

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2002) Seismic inversion for the parameters of two orthogonal fractures sets in a VTI background medium. Geophysics 67:292–299

    Article  Google Scholar 

  • Chen H, Zhang G, Ji Y, Yin X (2017) Azimuthal seismic amplitude difference inversion for fracture weakness. Pure appl Geophys 174:279–291

    Article  Google Scholar 

  • Downton J (2005) Seismic parameter estimation from AVO inversion. Ph.D. Thesis, University of Calgary

  • Downton JE, Roure B (2015) Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters. Interpretation 3:ST9–ST27

    Article  Google Scholar 

  • Hampson DP, Russell BH, Bankhead B (2005) Simultaneous inversion of pre-stack seismic data. In: SEG technical program expanded abstracts, pp 1633–1637

  • Hill R (1952) The elastic behavior of crystalline aggregate. Proc Phys Soc 65:349–354

    Article  Google Scholar 

  • Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective medium modeling of the elastic properties of shales. Geophysics 59:1570–1583

    Article  Google Scholar 

  • Hudson JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J Int 64:133–150

    Article  Google Scholar 

  • Mallick S, Craft KL, Meister LJ, Chambers RE (1998) Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics 63:692–706

    Article  Google Scholar 

  • Pan X, Zhang G, Chen H, Yin X (2017a) McMC-based AVAZ direct inversion for fracture weaknesse. J Appl Geophys 138:50–61

    Article  Google Scholar 

  • Pan X, Zhang G, Chen H, Yin X (2017b) McMC-based nonlinear EIVAZ inversion driven by rock physics. J Geophys Eng 14:368–379

    Article  Google Scholar 

  • Pšenčik I, Martins JL (2001) Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media. Stud Geophys Geod 45:176–199

    Article  Google Scholar 

  • Pšenčik I, Vavryčuk V (1998) Weak contrast PP-wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl Geophys 151:699–718

    Article  Google Scholar 

  • Rüger A (1997) P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics 62:713–722

    Article  Google Scholar 

  • Rüger A (1998) Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics 63:935–947

    Article  Google Scholar 

  • Sacchi MD, Ulrych TJ (1995) High-resolution velocity gathers and offset space reconstruction. Geophysics 60:1169–1177

    Article  Google Scholar 

  • Scales JA, Smith ML (1994) Introductory geophysical inverse theory. Samizdat Press

  • Schoenberg M, Douma J (1988) Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect 36:571–590

    Article  Google Scholar 

  • Schoenberg M, Helbig K (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics 62:1954–1957

    Article  Google Scholar 

  • Schoenberg M, Muir F (1989) A calculus for finely layered anisotropic media. Geophysics 54:581–589

    Article  Google Scholar 

  • Shaw RK, Sen MK (2004) Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int 158:225–238

    Article  Google Scholar 

  • Shaw RK, Sen MK (2006) Use of AVOAZ data to estimate fluid indicator in a vertically fractured medium. Geophysics 71:C15–C24

    Article  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966

    Article  Google Scholar 

  • Tsvankin L (1997) Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics 62:1292–1309

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2012) AVO inversion and poroelasticity with P- and S-wave moduli. Geophysics 77:29–36

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the sponsorship of National Natural Science Foundation of China (41674130), National Basic Research Program of China (973 Program, 2014CB239201), National Grand Project for Science and Technology (2016ZX05027004-001, 2016ZX05002005-09HZ), and the Fundamental Research Funds for the Central Universities. We are very grateful to an anonymous associate, and Alexey Stovas for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinpeng Pan.

Appendices

Appendix 1: Derivation for Linearized PP-Wave Reflection Coefficient in a Weakly Anisotropic Medium with Orthorhombic Symmetry Formed by a Single Set of Aligned Vertical Fractures Embedded in a VTI Background

The relationships between the subscripts (I, J) and (i, j, k, l) in Eq. (30) are given by Shaw and Sen (2006)

$$I = i\delta_{ij} + \left( {9 - i - j} \right)\left( {1 - \delta_{ij} } \right),$$
(41)

and

$$J = k\delta_{kl} + \left( {9 - k - l} \right)\left( {1 - \delta_{kl} } \right),$$
(42)

where \(\delta_{ij}\) and \(\delta_{kl}\) both denote the Kronecker delta.

For the case of P-wave incidence and reflection, the polarization and slowness vectors are given by

$$t\text{ = }\left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta } \right],$$
(43)
$$t^{\prime } = \left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,\cos \theta } \right],$$
(44)
$$p = {1 \mathord{\left/ {\vphantom {1 \alpha }} \right. \kern-0pt} \alpha }\left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta } \right],$$
(45)

and

$$p^{\prime } = {1 \mathord{\left/ {\vphantom {1 \alpha }} \right. \kern-0pt} \alpha }\left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,\cos \theta } \right],$$
(46)

where α represents the background P-wave velocity, and \(\phi\) represents the azimuthal phase angle.

Substituting Eqs. (43) and (44) into Eq. (30), the expression of \(\xi\) is then given by

$$\xi = \cos^{2} \theta - \sin^{2} \theta = \cos 2\theta .$$
(47)

Substituting Eqs. (43)–(47) into Eq. (30), the expression of \(\eta_{IJ}\) is then given by

$$\begin{aligned} \eta_{11} & = {{\sin^{4} \theta \cos^{4} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \cos^{4} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }},\quad \eta_{12} = {{\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }},\quad \eta_{13} = {{\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }}, \\ \eta_{22} & = {{\sin^{4} \theta \sin^{4} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \sin^{4} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }},\quad \eta_{23} = {{\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }},\quad \eta_{33} = {{\cos^{4} \theta } \mathord{\left/ {\vphantom {{\cos^{4} \theta } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }}, \\ \eta_{44} & = {{ - 4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } \mathord{\left/ {\vphantom {{ - 4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }},\quad \eta_{55} = {{ - 4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } \mathord{\left/ {\vphantom {{ - 4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }},\text{ } \\ \eta_{66} & = {{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } \mathord{\left/ {\vphantom {{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } {\alpha^{2} }}} \right. \kern-0pt} {\alpha^{2} }},\quad \eta_{21} = \eta_{12} \text{,}\quad \eta_{31} = \eta_{13} \text{,}\quad \eta_{32} = \eta_{23} . \\ \end{aligned}$$
(48)

The calculation of Eq. (30) then yields

$$\begin{aligned} S & = \Delta \rho \xi + \sum\limits_{I = 1}^{6} {\sum\limits_{J = 1}^{6} {\Delta C_{IJ} \eta_{IJ} } } \\ & = \Delta \rho \cos 2\theta + \frac{{\sin^{4} \theta \cos^{4} \phi }}{{\alpha^{2} }}\left[ {\Delta M - M\Delta \delta_{\text{N}} + 2M\Delta \varepsilon_{\text{b}} } \right] \\ & \quad +\, \frac{{2\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha^{2} }}\left[ {\Delta \lambda - \lambda \Delta \delta_{\text{N}} + 2M\Delta \varepsilon_{\text{b}} - 4\mu \Delta \gamma_{\text{b}} } \right] \\ & \quad + \,\frac{{2\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha^{2} }}\left[ {\Delta \lambda - \lambda \Delta \delta_{\text{N}} + M\Delta \delta_{\text{b}} } \right] + \frac{{\sin^{4} \theta \sin^{4} \phi }}{{\alpha^{2} }}\left[ {\Delta M - M\chi^{2} \Delta \delta_{\text{N}} + 2M\Delta \varepsilon_{\text{b}} } \right] \\ & \quad + \,\frac{{2\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha^{2} }}\left[ {\Delta \lambda - \lambda \chi \Delta \delta_{\text{N}} + M\Delta \delta_{\text{b}} } \right] \\ & \quad +\, \frac{{\cos^{4} \theta }}{{\alpha^{2} }}\left[ {\Delta M - M\chi^{2} \Delta \delta_{\text{N}} } \right]- \frac{{4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha_{0}^{2} }}\Delta \mu \\ & \quad - \frac{{4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha^{2} }}\left[ {\Delta \mu - \mu \Delta \delta_{\text{V}} } \right] + \frac{{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha^{2} }}\left[ {\Delta \mu - \mu \Delta \delta_{\text{H}} - 2\mu \Delta \gamma_{\text{b}} } \right] \\ & = \frac{1}{{\alpha^{2} }}\Delta M - \frac{{\sin^{2} \theta \cos^{2} \theta }}{{\alpha^{2} }}\Delta \mu + \cos 2\theta \Delta \rho + \frac{{2M\sin^{4} \theta }}{{\alpha^{2} }}\Delta \varepsilon_{\text{b}} + \frac{{2M\sin^{2} \theta \cos^{2} \theta }}{{\alpha^{2} }}\Delta \delta_{\text{b}} \\ & \quad - \,\frac{M}{{\alpha^{2} }}\left[ {2\frac{\mu }{M}\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{\text{N}} + \frac{{4\mu \sin^{2} \theta \cos^{2} \phi }}{{\alpha^{2} }}\Delta \delta_{\text{V}} \\ & \quad-\, \frac{{4\mu \sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha^{2} }}\Delta \delta_{\text{H}} . \\ \end{aligned}$$
(49)

Combining Eq. (49), the calculation of Eq. (29) finally gives

$$\begin{aligned} R_{\text{PP}} \left( {\theta ,\phi } \right) & = \frac{{\sec^{2} \theta }}{4M}\Delta M - \frac{{2\sin^{2} \theta }}{M}\Delta \mu + \frac{1}{2\rho }\left( {1 - \frac{{\sec^{2} \theta }}{2}} \right)\Delta \rho \\ & \quad + \,\frac{{\sin^{2} \theta \tan^{2} \theta }}{2}\Delta \varepsilon_{\text{b}} + \frac{{\sin^{2} \theta }}{2}\Delta \delta_{\text{b}} - \frac{{\sec^{2} \theta }}{4}\left[ {2\frac{\mu }{M}\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{\text{N}} \\ & \quad + \,\frac{\mu }{M}\sin^{2} \theta \cos^{2} \phi \Delta \delta_{\text{V}} - \frac{\mu }{M}\sin^{2} \theta \tan^{2} \theta \sin^{2} \phi \cos^{2} \phi \Delta \delta_{\text{H}} , \\ \end{aligned}$$
(50)

Appendix 2: Derivation for Linearized PP-Wave Reflection Coefficients in a Weakly Anisotropic Medium with Orthorhombic Symmetry Formed by Two Orthogonal Vertical Fracture Sets Embedded in an Isotropic or VTI Background

Two orthogonal vertical fracture sets embedded in an isotropic or VTI background can be both considered as an effective long-wavelength orthorhombic medium (Bakulin et al. 2000, 2002). To further simplify the procedure of parameter estimation, the fracture sets are assumed to be rotationally invariant. For such a weakly anisotropic medium with orthorhombic symmetry formed by two orthogonal vertical fracture sets embedded in an isotropic background, where the first fracture set is perpendicular to the x axis (shown in Fig. 1b), neglecting the terms that contain \(\delta_{{{\text{N}}1}} \delta_{{{\text{N}}2}}\) and \(\delta_{{{\text{T}}1}} \delta_{{{\text{T}}2}}\) for the case of small fracture weaknesses, an expression for the effective elastic stiffness tensor can be approximated as

$${\mathbf{C}}_{\text{OA}} = \left[ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{13} } & 0 & 0 & 0 \\ {C_{12} } & {C_{22} } & {C_{23} } & 0 & 0 & 0 \\ {C_{13} } & {C_{23} } & {C_{33} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {C_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {C_{55} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {C_{66} } \\ \end{array} } \right] \approx \left[ {\begin{array}{*{20}c} {{\hat{\mathbf{C}}}_{1} } & {\mathbf{0}} \\ {\mathbf{0}} & {{\hat{\mathbf{C}}}_{2} } \\ \end{array} } \right],$$
(51)

where 0 represents the 3 × 3 zero matrix, and \({{\hat{\mathbf{C}}}}_{1}\) and \({{\hat{\mathbf{C}}}}_{2}\) are given by

$${{\hat{\mathbf{C}}}}_{1} = \left[ {\begin{array}{*{20}l} {M\left( {1 - \delta_{{{\text{N}}1}} - \chi^{2} \delta_{{{\text{N}}2}} } \right)} \hfill & {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right)} \hfill & {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \chi \delta_{{{\text{N}}2}} } \right)} \hfill \\ {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right)} \hfill & {M\left( {1 - \chi^{2} \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right)} \hfill & {\lambda \left( {1 - \chi \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right)} \hfill \\ {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \chi \delta_{{{\text{N}}2}} } \right)} \hfill & {\lambda \left( {1 - \chi \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right)} \hfill & {M\left( {1 - \chi^{2} \delta_{{{\text{N}}1}} - \chi^{2} \delta_{{{\text{N}}2}} } \right)} \hfill \\ \end{array} } \right],$$
(52)

and

$${{\hat{\mathbf{C}}}}_{2} = \left[ {\begin{array}{*{20}c} {\mu \left( {1 - \delta_{{{\text{T}}2}} } \right)} & 0 & 0 \\ 0 & {\mu \left( {1 - \delta_{{{\text{T}}1}} } \right)} & 0 \\ 0 & 0 & {\mu \left( {1 - \delta_{{{\text{T}}1}} - \delta_{{{\text{T}}2}} } \right)} \\ \end{array} } \right].$$
(53)

Here \(\delta_{{{\text{N}}i}} = {{Z_{{{\text{N}}i}} M} \mathord{\left/ {\vphantom {{Z_{{{\text{N}}i}} M} {\left[ {1 + Z_{{{\text{N}}i}} M} \right]}}} \right. \kern-0pt} {\left[ {1 + Z_{{{\text{N}}i}} M} \right]}}\) and \(\delta_{{{\text{T}}i}} = {{Z_{{{\text{T}}i}} \mu } \mathord{\left/ {\vphantom {{Z_{{{\text{T}}i}} \mu } {\left[ {1 + Z_{{{\text{T}}i}} \mu } \right]}}} \right. \kern-0pt} {\left[ {1 + Z_{{{\text{T}}i}} \mu } \right]}}\) represent the normal and tangential weaknesses of two orthogonal vertical fracture sets related to the corresponding normal and tangential fracture compliances Z Ni and Z Ti .

Following a similar derivation method for the case of small fracture weaknesses, the expression for linearized PP-wave reflection coefficient in such an orthorhombic medium can be expressed as

$$\begin{aligned} R_{\text{PP}} \left( {\theta ,\phi } \right) & = \frac{{\sec^{2} \theta }}{4}\frac{\Delta M}{M} - 2g\sin^{2} \theta \frac{\Delta \mu }{\mu } + \left( {\frac{1}{2} - \frac{{\sec^{2} \theta }}{4}} \right)\frac{\Delta \rho }{\rho } \\ & \quad - \frac{{\sec^{2} \theta }}{4}\left[ {2g\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{{{\text{N}}1}} \\ & \quad+ g\sin^{2} \theta \cos^{2} \phi \left( {1 - \tan^{2} \theta \sin^{2} \phi } \right)\Delta \delta_{{{\text{T}}1}} \\ & \quad - \frac{{\sec^{2} \theta }}{4}\left[ {2g\left( {\sin^{2} \theta \cos^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{{{\text{N}}2}} \\ & \quad+ g\sin^{2} \theta \sin^{2} \phi \left( {1 - \tan^{2} \theta \cos^{2} \phi } \right)\Delta \delta_{{{\text{T}}2}} . \\ \end{aligned}$$
(54)

Similarly, for such an orthorhombic medium formed by two orthogonal vertical fracture sets embedded in a VTI background (shown in Fig. 1c), neglecting the terms that contain \(\varepsilon_{\text{b}} \delta_{{{\text{N}}1}}\), \(\varepsilon_{\text{b}} \delta_{{{\text{N}}2}}\), \(\varepsilon_{\text{b}} \delta_{{{\text{N}}1}} \delta_{{{\text{N}}2}}\), \(\gamma_{\text{b}} \delta_{{{\text{N}}1}}\), \(\gamma_{\text{b}} \delta_{{{\text{N}}2}}\), \(\gamma_{\text{b}} \delta_{{{\text{N}}1}} \delta_{{{\text{N}}2}}\),\(\delta_{\text{b}} \delta_{{{\text{N}}1}}\), \(\delta_{\text{b}} \delta_{{{\text{N}}2}}\), \(\delta_{\text{b}} \delta_{{{\text{N}}1}} \delta_{{{\text{N}}2}}\), \(\gamma_{\text{b}} \delta_{{{\text{T}}1}}\), \(\gamma_{\text{b}} \delta_{{{\text{T}}2}}\), and \(\gamma_{\text{b}} \delta_{{{\text{T}}1}} \delta_{{{\text{T}}2}}\) for the case of weak anisotropy and small fracture weaknesses, an expression for the effective elastic stiffness tensor can be approximated as

$${\mathbf{C}}_{\text{OA}} = \left[ {\begin{array}{llllll} {C_{11} } & {C_{12} } & {C_{13} } & 0 & 0 & 0 \\ {C_{12} } & {C_{22} } & {C_{23} } & 0 & 0 & 0 \\ {C_{13} } & {C_{23} } & {C_{33} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {C_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {C_{55} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {C_{66} } \\ \end{array} } \right] \approx \left[ {\begin{array}{*{20}c} {\hat{\hat{{\mathbf{C}}}}_{1} } & {\mathbf{0}} \\ {\mathbf{0}} & {\hat{\hat{{\mathbf{C}}}}_{2} } \\ \end{array} } \right],$$
(55)

where 0 represents the 3 × 3 zero matrix, and \({\hat{\hat{\mathbf{C}}}}_{1}\) and \({\hat{\hat{\mathbf{C}}}}_{2}\) are given by

$${\hat{\hat{\mathbf{C}}}}_{1} = \left[ {\begin{array}{*{20}l} {M\left( {1 - \delta_{{{\text{N}}1}} - \chi^{2} \delta_{{{\text{N}}2}} } \right) + 2M\varepsilon_{\text{b}} } \hfill & {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right) + 2M\varepsilon_{\text{b}} - 4\mu \gamma_{\text{b}} } \hfill & {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \chi \delta_{{{\text{N}}2}} } \right) + M\delta_{\text{b}} } \hfill \\ {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right) + 2M\varepsilon_{\text{b}} - 4\mu \gamma_{\text{b}} } \hfill & {M\left( {1 - \chi^{2} \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right) + 2M\varepsilon_{\text{b}} } \hfill & {\lambda \left( {1 - \chi \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right) + M\delta_{\text{b}} } \hfill \\ {\lambda \left( {1 - \delta_{{{\text{N}}1}} - \chi \delta_{{{\text{N}}2}} } \right) + M\delta_{\text{b}} } \hfill & {\lambda \left( {1 - \chi \delta_{{{\text{N}}1}} - \delta_{{{\text{N}}2}} } \right) + M\delta_{\text{b}} } \hfill & {M\left( {1 - \chi^{2} \delta_{{{\text{N}}1}} - \chi^{2} \delta_{{{\text{N}}2}} } \right)} \hfill \\ \end{array} } \right],$$
(56)

and

$${\hat{\hat{\mathbf{C}}}}_{2} = \left[ {\begin{array}{*{20}c} {\mu \left( {1 - \Delta \delta_{{{\text{T}}2}} } \right)} & 0 & 0 \\ 0 & {\mu \left( {1 - \delta_{{{\text{T}}1}} } \right)} & 0 \\ 0 & 0 & {\mu \left( {1 - \delta_{{{\text{T}}1}} - \delta_{{{\text{T}}2}} } \right) - 2\mu \gamma_{\text{b}} } \\ \end{array} } \right].$$
(57)

Following a similar derivation method for the case of weak anisotropy and small fracture weaknesses, the expression for linearized PP-wave reflection coefficient in such an orthorhombic medium can be expressed as

$$\begin{aligned} R_{\text{PP}} \left( {\theta ,\phi } \right) & = \frac{{\sec^{2} \theta }}{4}\frac{\Delta M}{M} - 2g\sin^{2} \theta \frac{\Delta \mu }{\mu } + \left( {\frac{1}{2} - \frac{{\sec^{2} \theta }}{4}} \right)\frac{\Delta \rho }{\rho } + \frac{{\sin^{2} \theta \tan^{2} \theta }}{2}\Delta \varepsilon_{\text{b}} + \frac{{\sin^{2} \theta }}{2}\Delta \delta_{\text{b}} \\ & \quad - \,\frac{{\sec^{2} \theta }}{4}\left[ {2g\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{{{\text{N}}1}} \\ & \quad+ g\sin^{2} \theta \cos^{2} \phi \left( {1 - \tan^{2} \theta \sin^{2} \phi } \right)\Delta \delta_{{{\text{T}}1}} \\ & \quad - \,\frac{{\sec^{2} \theta }}{4}\left[ {2g\left( {\sin^{2} \theta \cos^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{{{\text{N}}2}} \\ & \quad+ g\sin^{2} \theta \sin^{2} \phi \left( {1 - \tan^{2} \theta \cos^{2} \phi } \right)\Delta \delta_{{{\text{T}}2}} . \\ \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zhang, G. & Yin, X. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry. Surv Geophys 39, 99–123 (2018). https://doi.org/10.1007/s10712-017-9434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9434-2

Keywords

Navigation