Skip to main content
Log in

Model Parameterization and PP-Wave Amplitude Versus Angle and Azimuth (AVAZ) Direct Inversion for Fracture Quasi-Weaknesses in Weakly Anisotropic Elastic Media

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Homogeneous isotropic or vertically transverse isotropic rocks containing a single set of aligned, vertical fractures exhibits an effective long-wavelength horizontally transverse isotropy (HTI) or orthorhombic anisotropy. The estimation for properties of subsurface fractures has significant application in characterization of naturally fractured rocks. The purpose of this work is to demonstrate an approach of amplitude versus angle and azimuth (AVAZ) direct inversion for fracture characterization utilizing the observable wide-azimuth seismic reflection data in weakly anisotropic elastic media. The simplest single fracture system is HTI model. Much attention has been devoted to the weak-contrast and weak-anisotropy HTI model due to its significance for reservoir characterization. Treating the fractures as linear-slip interfaces, we begin with the derivation for perturbations of stiffness matrix at a planar weak-contrast interface separating two weakly anisotropic HTI half-spaces that share the same fracture normal, as a function of background elastic moduli and fracture parameters. Using the perturbation matrix and scattering function, we then derive a linearized PP-wave reflection coefficient of a weakly HTI medium in terms of P- and S-wave moduli, density, and fracture weaknesses, which builds a linearized relationship between the fracture parameters and reflection coefficient with the priority calculation for the azimuth of fracture normal based on the least square ellipse fitting method. Finally, we reformulate the reflectivity caused by weakness differences to parameterize the weaknesses for the so-called quasi-weaknesses and propose a method of Bayesian AVAZ direct inversion in seismic detection of subsurface fractures. Cauchy and Gaussian probability distribution are used for the a priori information of model parameters and the likelihood function, and the maximum a posteriori estimate of quasi-weaknesses is reasonably estimated with the nonlinear iteratively reweighted least squares algorithm. Synthetic and real data illustrate the applicability of the proposed AVAZ inversion method in fracture characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bachrach R, Sengupta M, Salama A (2009) Reconstruction of the layer anisotropic elastic parameter and high resolution fracture characterization from P-wave data: a case study using seismic inversion and Bayesian rock physics parameter estimation. Geophys Prospect 57:253–262

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2000a) Estimation of fracture parameters from reflection seismic data-part I: HTI model due to a single fracture set. Geophysics 65:1788–1802

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2000b) Estimation of fracture parameters from reflection seismic data-part II: fractured models with orthorhombic symmetry. Geophysics 65:1803–1817

    Article  Google Scholar 

  • Downton J (2005) Seismic parameter estimation from AVO inversion. Ph.D. Thesis, University of Calgary

  • Downton JE, Roure B (2015) Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters. Interpretation 3:ST9-ST27

    Article  Google Scholar 

  • Gassmann F (1951) Über die elastizität poröser medien. Vier. der Natur. Gesellschaft Zürich 96:1–23

    Google Scholar 

  • Gray D, Todorovic-Marinic D (2004) Fracture detection using 3D azimuthal AVO. CSEG Rec 29:5–8

    Google Scholar 

  • Hampson DP, Russell BH, Bankhead B (2005) Simultaneous inversion of pre-stack seismic data. SEG Tech Progr Expand Abstr 2005:1633–1637

    Google Scholar 

  • Hill R (1952) The elastic behavior of crystalline aggregate. Proc Phys Soc 65:349–354

    Article  Google Scholar 

  • Hsu CJ, Schoenberg M (1993) Elastic waves through a simulated fractured medium. Geophysics 58:964–977

    Article  Google Scholar 

  • Ikelle LT (1996) Amplitude variations with azimuths (AVAZ) inversion based on linearized inversion of common azimuthal sections, chapter 19. In: Fjaer E, Holt R, Rathore JS (eds) Seismic anisotropy. SEG, Tulsa, pp 601–644

    Chapter  Google Scholar 

  • Ikelle LT (1997) Parameterization of AVAZ (amplitude variation with azimuth) inversion. J Seism Explor 6:19–34

    Google Scholar 

  • Liu E, Martinez A (2012) Seismic fracture characterization: concepts and practical applications. EAGE Publication, Amsterdam

    Google Scholar 

  • Mallick S, Craft KL, Meister LJ, Chambers RE (1998) Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics 63:692–706

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mesdag P (2016) A new approach to quantitative azimuthal inversion for stress and fracture detection: 86th annual international meeting, SEG, expanded abstracts, pp 357–361

  • Narr W, Schechter WS, Thompson L (2006) Naturally fractured reservoir characterization. SPE Publication, New York

    Google Scholar 

  • Pan X, Zhang G, Chen H, Yin X (2017a) McMC-based AVAZ direct inversion for fracture weaknesses. J Appl Geophys 138:50–61

    Article  Google Scholar 

  • Pan X, Zhang G, Yin X (2017b) Azimuthally anisotropic elastic impedance inversion for fluid indicator driven by rock physics. Geophysics 82:C211–C227

    Article  Google Scholar 

  • Pan X, Zhang G, Yin X (2018) Azimuthal seismic amplitude variation with offset and azimuth inversion in weakly anisotropic media with orthorhombic symmetry. Surv Geophys 39:99–123

    Article  Google Scholar 

  • Pšenčik I, Gajewski D (1998) Polarization, phase velocity and NMO velocity of qP waves in arbitrary weakly anisotropic media. Geophysics 63:1754–1766

    Article  Google Scholar 

  • Pšenčik I, Martins JL (2001) Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media. Studia Geophysica et Geodaetica 45:176–199

    Article  Google Scholar 

  • Pšenčik I, Vavryčuk V (1998) Weak contrast PP-wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl Geophys 151:699–718

    Article  Google Scholar 

  • Rüger A (1997) P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics 62:713–722

    Article  Google Scholar 

  • Rüger A (1998) Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics 63:935–947

    Article  Google Scholar 

  • Sacchi MD, Ulrych TJ (1995) High-resolution velocity gathers and offset space reconstruction. Geophysics 60:1169–1177

    Article  Google Scholar 

  • Scales JA, Smith ML (1994) Introductory geophysical inverse theory. Samizdat Press, Golden

    Google Scholar 

  • Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 68:1516–1521

    Article  Google Scholar 

  • Schoenberg M, Douma J (1988) Elastic-wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect 36:571–590

    Article  Google Scholar 

  • Schoenberg M, Helbig K (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics 62:1954–1957

    Article  Google Scholar 

  • Schoenberg M, Protazio J (1990) ‘Zoeppritz’ rationalized and generalized to anisotropy. J Acoust Soc Am 88:S46

    Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60:204–211

    Article  Google Scholar 

  • Shaw RK, Sen MK (2004) Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int 158:225–238

    Article  Google Scholar 

  • Shaw RK, Sen MK (2006) Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics 71:C15–C24

    Article  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966

    Article  Google Scholar 

  • Thomsen L (2007) Understanding seismic anisotropy in exploration and exploitation: 2002 SEG/EAGE distinguished instructor short course [M]. Society of Exploration Geophysicists

  • Tsvankin L (1996) P-wave signatures and notation for transversely isotropic media: an overview. Geophysics 61:467–483

    Article  Google Scholar 

  • Tsvankin L, Grechka V (2011) Seismology of azimuthally anisotropic media and seismic fracture characterization. SEG Publication, New York

    Book  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the sponsorship of National Natural Science Foundation of China (41674130, U1562215), and National Basic Research Program of China (2014CB239201), National Grand Project for Science and Technology (2016ZX05027004-001, 2016ZX05002005-09HZ), and the Fundamental Research Funds for the Central Universities for their funding in this research. We also thank Alexey Stovas and another anonymous reviewer for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinpeng Pan.

Appendices

Appendix A: Linearized PP-Wave Reflection Coefficient in a Weakly HTI Medium

For the case of P-wave incidence and reflection, the polarization and slowness vectors are given by (Shaw and Sen 2006)

$$t = \left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta } \right],$$
(A-1)
$$t^{'} = \left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,\cos \theta } \right],$$
(A-2)
$$p = {1 \mathord{\left/ {\vphantom {1 {\alpha_{b} }}} \right. \kern-0pt} {\alpha_{b} }}\left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta } \right],$$
(A-3)

and

$$p^{'} = {1 \mathord{\left/ {\vphantom {1 {\alpha_{b} }}} \right. \kern-0pt} {\alpha_{b} }}\left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,\cos \theta } \right],$$
(A-4)

where \(\alpha\) represents the background P-wave velocity, and \(\phi\) represents the azimuthal phase angle.

The expression for \(\xi\) and \(\eta_{mn}\) is then given by (Shaw and Sen 2006)

$$\xi = \cos^{2} \theta - \sin^{2} \theta = \cos 2\theta ,$$
(A-5)

and

$$\begin{aligned} \eta_{11} & = {{\sin^{4} \theta \cos^{4} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \cos^{4} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }},\text{ }\eta_{12} = {{\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }},\text{ }\eta_{13} = {{\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }}, \\ \eta_{22} & = {{\sin^{4} \theta \sin^{4} \phi } \mathord{\left/ {\vphantom {{\sin^{4} \theta \sin^{4} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }},\text{ }\eta_{23} = {{\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } \mathord{\left/ {\vphantom {{\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }},\text{ }\eta_{33} = {{\cos^{4} \theta } \mathord{\left/ {\vphantom {{\cos^{4} \theta } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }}, \\ \eta_{44} & = {{ - 4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } \mathord{\left/ {\vphantom {{ - 4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }},\text{ }\eta_{55} = {{ - 4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } \mathord{\left/ {\vphantom {{ - 4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }},\text{ } \\ \eta_{66} & = {{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } \mathord{\left/ {\vphantom {{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi } {\alpha_{b}^{2} }}} \right. \kern-0pt} {\alpha_{b}^{2} }},\text{ }\eta_{21} = \eta_{12} \text{, }\eta_{31} = \eta_{13} \text{, }\eta_{32} = \eta_{23} . \\ \end{aligned}$$
(A-6)

Combining Eq. (A-6) and Eqs. (8)–(12), the calculation of Eq. (13) yields

$$\begin{aligned} & R_{\text{PP}} = \frac{\Delta \rho }{{4\rho_{b} }}\left( {\xi \sec^{2} \theta } \right) + \sum\limits_{m = 1}^{6} {\sum\limits_{n = 1}^{6} {\frac{{\Delta c_{mn} }}{{4\rho_{b} }}\left( {\eta_{mn} \sec^{2} \theta } \right)} } \\ & = \frac{{\sec^{2} \theta }}{{4\rho_{b} }}\left\{ \begin{aligned} \Delta \rho \cos 2\theta + \frac{{\sin^{4} \theta \cos^{4} \phi }}{{\alpha_{b}^{2} }}\left[ {\Delta M - M_{b} \Delta \delta_{N} } \right]\text{ } + \frac{{2\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha_{b}^{2} }}\left[ {\Delta \lambda - \lambda_{b} \Delta \delta_{N} } \right] \hfill \\ \text{ }{ + }\frac{{2\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha_{b}^{2} }}\left[ {\Delta \lambda - \lambda_{b} \Delta \delta_{N} } \right] + \frac{{\sin^{4} \theta \sin^{4} \phi }}{{\alpha_{b}^{2} }}\left[ {\Delta M - M_{b} \chi^{2} \Delta \delta_{N} } \right] \hfill \\ \text{ } + \frac{{2\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha_{b}^{2} }}\left[ {\Delta \lambda - \lambda_{b} \chi \Delta \delta_{N} } \right] + \frac{{\cos^{4} \theta }}{{\alpha_{b}^{2} }}\left[ {\Delta M - M_{b} \chi^{2} \Delta \delta_{N} } \right] \hfill \\ \text{ } - \frac{{4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha_{b}^{2} }}\Delta \mu \hfill \\ \text{ } - \frac{{4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha_{b}^{2} }}\left[ {\Delta \mu - \mu_{b} \Delta \delta_{T} } \right] + \frac{{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha_{b}^{2} }}\left[ {\Delta \mu - \mu_{b} \Delta \delta_{T} } \right] \hfill \\ \end{aligned} \right\}, \\ \end{aligned}$$
(A-7)

Therefore, the linearized PP-wave reflection coefficient in a weakly HTI medium can be further deduced as

$$\begin{aligned} & R_{\text{PP}} = \frac{{\sec^{2} \theta }}{{4M_{b} }}\Delta M - \frac{{2\sin^{2} \theta }}{{M_{b} }}\Delta \mu + \frac{1}{{2\rho_{b} }}\left( {1 - \frac{{\sec^{2} \theta }}{2}} \right)\Delta \rho \\ & \quad - \;\frac{{\sec^{2} \theta }}{4}\left[ {2\frac{{\mu_{b} }}{{M_{b} }}\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2} \Delta \delta_{N} + \frac{{\mu_{b} }}{{M_{b} }}\sin^{2} \theta \cos^{2} \phi \left( {1 - \tan^{2} \theta \sin^{2} \phi } \right)\Delta \delta_{T} . \\ \end{aligned}$$
(A-7)

Appendix B: Linearized PP-Wave Reflection Coefficient in a Weakly Orthorhombic Medium

A system of aligned vertical fractures embedded in a VTI background can be considered as an effective long-wavelength orthorhombic medium. In the case that fracture faces are perpendicular to the x1-axis, the effective elastic stiffness tensor \({\mathbf{c}}_{\text{OA}}\) in such an orthorhombic medium can be expressed as (Schoenberg and Helbig 1997)

$${\mathbf{c}}_{\text{OA}} = \left[ {\begin{array}{*{20}c} {c_{11b} \left( {1 - \delta_{N} } \right)} & {c_{12b} \left( {1 - \delta_{N} } \right)} & {c_{13b} \left( {1 - \delta_{N} } \right)} & 0 & 0 & 0 \\ {c_{12b} \left( {1 - \delta_{N} } \right)} & {c_{11b} \left( {1 - \delta_{N} \frac{{C_{12b}^{2} }}{{C_{11b}^{2} }}} \right)} & {c_{13b} \left( {1 - \delta_{N} \frac{{C_{12b} }}{{C_{11b} }}} \right)} & 0 & 0 & 0 \\ {c_{13b} \left( {1 - \delta_{N} } \right)} & {c_{13b} \left( {1 - \delta_{N} \frac{{C_{12b} }}{{C_{11b} }}} \right)} & {c_{33b} \left( {1 - \delta_{N} \frac{{C_{13b}^{2} }}{{C_{11b} C_{33b} }}} \right)} & 0 & 0 & 0 \\ 0 & 0 & 0 & {c_{44b} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {c_{44b} \left( {1 - \delta_{V} } \right)} & 0 \\ 0 & 0 & 0 & 0 & 0 & {c_{66b} \left( {1 - \delta_{H} } \right)} \\ \end{array} } \right],$$
(B-1)

where \(c_{ijb}\) represents the stiffness components of a VTI background medium, \(\delta_{\text{N}}\), \(\delta_{\text{V}}\), and \(\delta_{\text{H}}\) represent the dimensionless normal, vertical, and horizontal tangential fracture weaknesses, respectively.

Under the weak-anisotropy assumption, the dimensionless Thomsen’s (1986) weak-anisotropy parameters can be written in terms of stiffness components of VTI background as (Pšenčik and Gajewski 1998; Pšencik and Vavrycuk 1998)

$$\varepsilon_{b} = \frac{{c_{11b} - c_{33b} }}{{2c_{33b} }},$$
(B-2)
$$\text{ }\gamma_{b} = \frac{{c_{66b} - c_{44b} }}{{2c_{44b} }},$$
(B-3)

and

$$\delta_{b} = \frac{{c_{13b} + 2c_{44b} - c_{33b} }}{{c_{33b} }},$$
(B-4)

where \(\varepsilon_{b}\), \(\text{ }\gamma_{b}\), and \(\delta_{b}\) represent the three weak-anisotropy parameters of VTI background.

Under the assumption of small weak-anisotropy and weakness parameters, we neglected the terms that contain \(\delta_{N}^{2}\), \(\varepsilon_{b}^{2}\), \(\gamma_{b}^{2}\), \(\delta_{b}^{2}\), \(\varepsilon_{b} \delta_{N}\), \(\gamma_{b} \delta_{N}\), \(\delta_{b} \delta_{N}\), and \(\gamma_{b} \delta_{H}\), and derive a new expression for stiffness tensor in terms of weak anisotropic parameters of VTI background and fracture weaknesses in a weakly orthorhombic medium, which is given by

$${\mathbf{c}}_{\text{OA}} = \left[ {\begin{array}{*{20}c} {M_{b} \left( {1 - \delta_{N} + 2\varepsilon_{b} } \right)} & {\left( \begin{aligned} \lambda_{b} \left( {1 - \delta_{N} } \right) + \hfill \\ 2M_{b} \left( {\varepsilon_{b} - 2g\gamma_{b} } \right) \hfill \\ \end{aligned} \right)} & {\lambda_{b} \left( {1 - \delta_{N} } \right) + M_{b} \delta_{b} } & 0 & 0 & 0 \\ {\left( \begin{aligned} \lambda_{b} \left( {1 - \delta_{N} } \right) + \hfill \\ 2M_{b} \left( {\varepsilon_{b} - 2g\gamma_{b} } \right) \hfill \\ \end{aligned} \right)} & {M_{b} \left( {1 - \chi^{2} \delta_{N} } \right) + 2M_{b} \varepsilon_{b} } & {\lambda_{b} \left( {1 - \chi \delta_{N} } \right) + M_{b} \delta_{b} } & 0 & 0 & 0 \\ {\lambda_{b} \left( {1 - \delta_{N} } \right) + M_{b} \delta_{b} } & {\lambda_{b} \left( {1 - \chi \delta_{N} } \right) + M_{b} \delta_{b} } & {M_{b} \left( {1 - \chi^{2} \delta_{N} } \right)} & 0 & 0 & 0 \\ 0 & 0 & 0 & {\mu_{b} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {\mu_{b} \left( {1 - \delta_{V} } \right)} & 0 \\ 0 & 0 & 0 & 0 & 0 & {\mu_{b} \left( {1 - \delta_{H} - 2\gamma_{b} } \right)} \\ \end{array} } \right].$$
(B-5)

Considering the small perturbations in elastic moduli across the interface, and neglecting the terms that contain \(\Delta M\delta_{N}\), \(\Delta \lambda \delta_{N}\), \(\Delta M\varepsilon_{b}\), \(\Delta M\delta_{b}\), \(\Delta \mu \gamma_{b}\), \(\Delta \mu \delta_{V}\), and \(\Delta \mu \delta_{H}\) for the case of small weak-anisotropy and weakness parameters, we can derive the perturbations for stiffness components, which are given by

$$\Delta c_{11} \approx \Delta M + 2M_{b} \Delta \varepsilon_{b} - M_{b} \Delta \delta_{N} ,$$
(B-6)
$$\Delta c_{12} \approx \Delta \lambda + 2M_{b} \Delta \varepsilon_{b} - 4\mu_{b} \Delta \gamma_{b} - \lambda_{b} \Delta \delta_{N} ,$$
(B-7)
$$\Delta c_{13} \approx \Delta \lambda + M_{b} \Delta \delta_{b} - \lambda_{b} \Delta \delta_{N} ,$$
(B-8)
$$\Delta c_{22} \approx \Delta M + 2M_{b} \Delta \varepsilon_{b} - M_{b} \chi^{2} \Delta \delta_{N} ,$$
(B-9)
$$\Delta c_{23} \approx \Delta \lambda + M_{b} \Delta \delta_{b} - \lambda_{b} \chi \Delta \delta_{N} ,$$
(B-10)
$$\Delta c_{33} \approx \Delta M - M_{b} \chi^{2} \Delta \delta_{N} ,$$
(B-11)
$$\Delta c_{44} = \Delta \mu ,$$
(B-12)
$$\Delta c_{55} \approx \Delta \mu - \mu_{b} \Delta \delta_{V} ,$$
(B-13)

and

$$\Delta c_{66} \approx \Delta \mu - 2\mu_{b} \Delta \gamma_{b} - \mu_{b} \Delta \delta_{H} ,$$
(B-14)

where \(\Delta M\), \(\Delta \mu\), \(\Delta \lambda\), \(\Delta \varepsilon_{b}\), \(\Delta \gamma_{b}\), \(\Delta \delta_{b}\), \(\Delta \delta_{N}\), \(\Delta \delta_{V}\), and \(\Delta \delta_{H}\) represent the perturbations for elastic moduli, weak-anisotropy parameters of VTI background, and fracture weaknesses between the layers separated by the interface, respectively.

Combining the perturbation matrix and scattering function, we also derive a linearized PP-wave reflection coefficient of a weakly orthorhombic medium, which is given by

$$\begin{aligned} R_{\text{PP}} \left( {\theta ,\phi } \right) & = a_{M} \left( \theta \right)\frac{\Delta M}{{M_{b} }} + a_{\mu } \left( \theta \right)\frac{\Delta \mu }{{\mu_{b} }} + a_{\rho } \left( \theta \right)\frac{\Delta \rho }{{\rho_{b} }} + a_{{\varepsilon_{b} }} \left( \theta \right)\Delta \varepsilon_{b} + a_{{\delta_{b} }} \left( \theta \right)\Delta \delta_{b} \\ & \quad + \;a_{{\delta_{N} }} \left( {\theta ,\phi } \right)\Delta \delta_{N} + a_{{\delta_{V} }} \left( {\theta ,\phi } \right)\Delta \delta_{V} + a_{{\delta_{H} }} \left( {\theta ,\phi } \right)\Delta \delta_{H} , \\ \end{aligned}$$
(B-15)

where \(a_{M} \left( \theta \right) = {{\sec^{2} \theta } \mathord{\left/ {\vphantom {{\sec^{2} \theta } 4}} \right. \kern-0pt} 4}\), \(a_{\mu } \left( \theta \right) = - 2g\sin^{2} \theta\), \(a_{\rho } \left( \theta \right) = {{\left( {1 - {{\sec^{2} \theta } \mathord{\left/ {\vphantom {{\sec^{2} \theta } 2}} \right. \kern-0pt} 2}} \right)} \mathord{\left/ {\vphantom {{\left( {1 - {{\sec^{2} \theta } \mathord{\left/ {\vphantom {{\sec^{2} \theta } 2}} \right. \kern-0pt} 2}} \right)} 2}} \right. \kern-0pt} 2}\), \(a_{{\varepsilon_{b} }} \left( \theta \right) = {{\sin^{2} \theta \tan^{2} \theta } \mathord{\left/ {\vphantom {{\sin^{2} \theta \tan^{2} \theta } 2}} \right. \kern-0pt} 2}\), \(a_{{\delta_{b} }} \left( \theta \right) = {{\sin^{2} \theta } \mathord{\left/ {\vphantom {{\sin^{2} \theta } 2}} \right. \kern-0pt} 2}\), \(a_{{\delta_{N} }} \left( {\theta ,\phi } \right) = - {{\sec^{2} \theta } \mathord{\left/ {\vphantom {{\sec^{2} \theta } 4}} \right. \kern-0pt} 4}\left[ {2g\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right) - 1} \right]^{2}\), \(a_{{\delta_{V} }} \left( {\theta ,\phi } \right) = g\sin^{2} \theta \cos^{2} \phi\), and \(a_{{\delta_{H} }} \left( {\theta ,\phi } \right) = - g\sin^{2} \theta \tan^{2} \theta \sin^{2} \phi \cos^{2} \phi\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zhang, G. Model Parameterization and PP-Wave Amplitude Versus Angle and Azimuth (AVAZ) Direct Inversion for Fracture Quasi-Weaknesses in Weakly Anisotropic Elastic Media. Surv Geophys 39, 937–964 (2018). https://doi.org/10.1007/s10712-018-9481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9481-3

Keywords

Navigation