Skip to main content

Advertisement

Log in

Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Arzamendia Y, Vilá B (2012) Effects of capture, shearing and release on the ecology and behavior of wild vicuñas. J Wildl Manage 76:57–64. doi:10.1002/jwmg.242

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Blower DC, Pandolfi JM, Bruce BD, Gomez-Cabrera MdC, Ovenden JR (2012) Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Mar Ecol Prog Ser 455:229–244. doi:10.3354/meps09659

    Article  CAS  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154

    Article  CAS  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631

    Article  CAS  PubMed  Google Scholar 

  • Cieza de León P (1959/1553) The incas. In: von Hagen VW (ed) University of Oklahoma Press, Norman

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B (Methodol) 39:1–38

    Google Scholar 

  • Dirección de Fauna Silvestre (2008) Primer Censo Nacional de Camélidos Silvestres al Norte del Río Colorado. Manejo de Fauna Silvestre en la Argentina, SAyDS

    Google Scholar 

  • Dutton PH, Roden S, Stewart KR, LaCasella E, Tiwari M, Formia A, Thomé J, Livingstone SR, Eckert S, Chacon-Chaverri D, Rivalan P, Allman P (2013) Population stock structure of leatherback turtles (Dermochelys coriacea) in the Atlantic revealed using mtDNA and microsatellite markers. Conserv Genet 14:625–636. doi:10.1007/s10592-013-0456-0

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Endangered and threatened wildlife and plants; reclassification of certain vicuña populations from endangered to threatened with a special rule. 67 Federal Register 37696 (2002) https://www.gpo.gov/fdsys/pkg/FR-2002-05-30/pdf/FR-2002-05-30.pdf

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Flores-Ochoa J (1994) Man’s relationship with the camelids. Gold of the Andes: the llamas, alpacas, vicuñas and guanacos of South America. In: Martinez J (Ed) Barcelon, Spain, p 22–35

  • Frankham R (1995) Conservation genetics. Annl L Rev Genet 29:305–327

    Article  CAS  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140. doi:10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fredrickson RJ, Siminski P, Woolf M, Hedrick PW (2007) Genetic rescue and inbreeding depression in Mexican wolves. Proc Biol Sci 274(1623):2365–2371

    Article  PubMed Central  PubMed  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10: 305–318. doi:10.1046/j.1365-294X.2001.01190.x Geneious version 6.1.8 created by Biomatters. http://www.geneious.com/

  • Girman DJ, Vilà C, Geffen E, Creel S, Mills MG, McNutt JW, Ginsberg J, Kat PW, Mamiya KH, Wayne RK (2001) Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus). Mol Ecol 10(7):1703–1723

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez B, Palma R, Zapata B, Marín J (2006) Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mamm Rev 36:157–178. doi:10.1111/j.1365-2907.2006.00084.x

    Article  Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (Version 2.9.3.2). http://www.unil.ch/izea/softwares/fstat.html

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12(12):3335–3347

    Article  CAS  PubMed  Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M, Belden RC, McBride R, Jansen D, Lotz M, Shindle D, Howard J, Wildt DE, Penfold LM, Hostetler JA, Oli MK, O’Brien SJ (2010) Genetic restoration of the florida panther. Science 49:329

    Google Scholar 

  • Koford CB (1957) The vicuña and the Puna. Ecol Monogr 27:153–219

    Article  Google Scholar 

  • Laker J, Baldo J, Arzamendia Y, Yacobaccio HD (2006) La vicuña en los Andes. In: Vilá B (ed) Investigación, Conservación y Manejo de Vicuñas. Proyecto MACS, Buenos Aires, pp 37–50

    Google Scholar 

  • Lang KD, Wang Y, Plante Y (1996) Fifteen polymorphic dinucleotide microsatellites in llamas and alpacas. Anim Genet 27:293

    Article  CAS  PubMed  Google Scholar 

  • Leberg PL, Firmin BD (2008) Role of inbreeding depression and purging in captive breeding and restoration programmes. Mol Ecol 17:334–343. doi:10.1111/j.1365-294X.2007.03433.x

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein G, Vila B (2003) Vicuna use by Andean communities: an overview. Mt Res Dev 23:197–201

    Article  Google Scholar 

  • Lichtenstein G, Baldi R, Villalba L, Hoces D, Baigún R, Laker J (2008) Vicugna vicugna. The IUCN Red List of Threatened Species

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Lukoschek V, Waycott M, Keogh JS (2008) Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis. Mol Ecol 17:3062–3077

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Bellemain E, Swenson JE, François O (2004) Assumed and inferred spatial structure of populations: the Scandinavian brown bears revisited. Mol Ecol 13(5):1327–1331. doi:10.1111/j.1365-294X.2004.02074.x

    Article  CAS  PubMed  Google Scholar 

  • Marín JC, Casey CS, Kadwell M, Yaya K, Hoces D, Olazabal J, Rosadio R, Rodriguez J, Spotorno A, Bruford MW, Wheeler JC (2007) Mitochondrial phylogeography and demographic history of the vicuña: implications for conservation. Heredity 99(1):70–80. doi:10.1038/sj.hdy.6800966

    Article  PubMed  Google Scholar 

  • Molina JI (1782) Saggio Sulle Storia Naturale del Chile. Bologna

  • Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4

    Article  CAS  PubMed  Google Scholar 

  • Newman D, Tallmon DA (2001) Experimental evidence for beneficial fitness effects of gene flow in recently isolated populations. Conserv Biol 15:1054–1063. doi:10.1046/j.1523-1739.2001.0150041054.x

    Article  Google Scholar 

  • Norton JE, Ashley MV (2004) Genetic variability and population structure among wild Baird’s tapirs. Anim Conserv 7:211–220. doi:10.1017/S136794300400129

    Article  Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Beer E, Robinson S, Vasquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418. doi:10.1111/j.1365-294X.2012.05635.x

    Article  PubMed  Google Scholar 

  • Penedo MCT, Casetano AR, Cordova KI (1998) Microsatellite markers for South American camelids. Anim Genet 29:411–412

    CAS  PubMed  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying Populations for Conservation on the Basis of Genetic Markers. Conserv Biol 12:844–855. doi:10.1111/j.1523-1739.1998.96489.x

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2010) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    Google Scholar 

  • Prugnolli F, de Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165. doi:10.1038/sj.hdy.6800060

    Article  Google Scholar 

  • Ralls K, Meadows R (2001) Captive breeding and reintroduction. In: Levin S (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 599–607

    Chapter  Google Scholar 

  • Rigalt F (2011) Manejo de la vicuña en la República Argentina. Conference presented at: VII Congreso de la Asociación Latinoamericana de Especialistas en Pequeños Rumiantes y Camélidos Sudamericanos (ALEPRyCS) Huancavelica, Perú

  • Risco-Castillo V, Wheeler JC, Rosadio R, García-Peña FJ, Arnaiz-Seco I, Hoces D, Castillo Veliz A, Ortega-Mora LM (2014) Health impact evaluation of alternative management systems in vicuña (Vicugna vicugna mensalis) populations in Peru. Trop Anim Health Pro 46(6):641–646

    Article  Google Scholar 

  • Romero SR (2009) Experiencias locales en manejo de vicuñas. In: Panorama Agropecuario de Salta y Jujuy. Ediciones INTA. 54:14–18

  • Sahley CT, Vargas JT, Valdivia JS (2007) Biological sustainability of live shearing of vicuña in Peru. Conserv Biol 21(1):98–105. doi:10.1111/j.1523-1739.2006.00558.x

    Article  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Preparation and analysis of eukaryotic genomic DNA, molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarno RJ, Villalba L, Bonacic C, Gonzalez B, Zapata B, Mac Donald DW et al (2004) Phylogeography and subspecies assessment of vicunas in Chile and Bolivia utilizing mtDNA and microsatellite markers: implications for vicuna conservation and management. Conserv Genet 5:89–102. doi:10.1038/sj.hdy.6800966

    Article  CAS  Google Scholar 

  • Sarno RJ, Bonacic C, Gonzalez BA, Zapata B, O’Brien SJ, Johnson WE (2009) Molecular genetic evidence for social group disruption of wild vicuñas Vicugna vicugna captured for wool harvest in Chile. Small Rum Res 84:28–34. doi:10.1016/j.smallrumres.2009.05.001

    Article  Google Scholar 

  • Secretaría de Ambiente y Desarrollo Sustentable (2014) Informe a la XXXI Reunión Ordinaria del convenio de la Vicuña, República Argentina

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629

    Article  PubMed  Google Scholar 

  • Thomas O (1917) Preliminary diagnosis of new mammals obtained by the Yale National Society Peruvian Expedition. Smithsonian Miscellaneous Collection, 68

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vila B, Lichtenstein G (2006) In: Bolkovic, ML, D Ramadori (eds) Manejo de Fauna Silvestre en la Argentina. Programas de uso sustentable. Dirección de Fauna Silvestre, Secretaría de Ambiente y Desarrollo Sustentable, Buenos Aires. pp 168

  • Weir BS (1996) Genetic Data Analysis II: Methods for discrete population genetic data. Sinauer pp 445

  • Wheeler J, Hoces D (1997) Community participation, sustainable use and vicuna conservation in Peru. Mt Res Dev 17:283–287

    Article  Google Scholar 

  • Wheeler JC, Fernández M, Rosadio R, Hoces D, Kadwell M, Bruford MW (2001) Diversidad Genética y manejo de poblaciones de vicuñas en el Perú. RIVEP Revista de Investigaciones Veterinarias del Perú Supl 1:170–183

    Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562. doi:10.1007/s10592-005-9009-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of INTA Catamarca and INTA Abra Pampa for collaborating with mobility, sample collection and shipping, and the Secretariat of Environment and Sustainable Development from Catamarca for facilitating permits for sampling. We also want to thank to Dr. B. Vila who provided samples from Cieneguillas and to SANIN S.A for allowing us to collect samples during vicuña capture in Vega Pasto Ventura. Thank to Dr M. Martinez from the SRA and Dr. MR. Santos for their technical assistance with microsatellite data. This work was supported by grants PIP-0278 and PICT 2010-1658 from The National Scientific and Technical Research Council (CONICET) and the National Agency of Scientific and Technological Promotion (ANPCYT) of Argentina. M. Anello is PhD fellow of CONICET, L Vidal Rioja is researcher of CONICET and Di Rocco F is researcher of CICPBA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Di Rocco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM_Fig. 1

Median joining network of mtDNA showing evolutionary relationships among haplotypes. Size of circles is proportional to the frequency of each haplotype. Multiple mutational steps are indicated by a double line and the respective number of substitutions (BMP 1259 kb)

ESM_Fig. 2

log(genetic similarity (M)) vs log(geographic distance) plot. Correlation of genetics and geographic distance parameters: Z = 6.5135, r = −0.9839, p = 0.04. Linear model: Y = 2.153–0.764X, R2 = 0.969 (95 % CI: 0.857, 1.000) (JPEG 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anello, M., Daverio, M.S., Romero, S.R. et al. Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina. Genetica 144, 85–97 (2016). https://doi.org/10.1007/s10709-015-9880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9880-z

Keywords

Navigation