Skip to main content
Log in

Spatiotemporal genetic differentiation of Cuban natural populations of the pink shrimp Farfantepenaeus notialis

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We analyzed the spatiotemporal genetic structure of Farfantepenaeus notialis populations using five microsatellites loci in order to understand the influence of natural events such as hurricanes on the genetic drift/migration balance as the main cause for the variation of allele frequencies over time. The results were compared with the previous ones obtained from allozymes and mtDNA. High and stable genetic diversity levels (He  =  0.879  ±  0.0015) were found over eight years for the populations that inhabit the south Cuban platform, however significant changes of allele frequencies were detected over time. The F ST estimates, albeit low, revealed significant differences among populations inside the Ana Maria Gulf for 1995 but not for the 1999 and 2003 samples. The F ST, AMOVA and the genetic distance analysis revealed the instability of the genetic structure over time in accordance with allozymes results. The correspondence of the microsatellite results with those obtained from allozymes confirm the effects of migration enhanced by natural events as the main cause of the temporal variation of allele frequencies. The genetic drift effect was discarded through the evaluation of Ne and the M ratio, while natural selection effects were rejected because of the lowest probability of microsatellite loci being under selective pressures. The microsatellite data are also consistent with the results obtained with mtDNA in detecting significant and persistent genetic differences between the Gulfs of Ana María and Batabanó for the years 1995 and 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allison GW, Gaines SD, Lubchenco J, Possingham HP (2003) Ensuring persistence of marine reserves: catastrophes require adopting an insurance factor. Ecol Appl 13(1):S8–S24

    Article  Google Scholar 

  • Ayre DJ, Hughes JP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278

    Article  Google Scholar 

  • Addison JA, Hart MW (2003) Analysis of population genetic structure of the green sea urchin (Strongylocentrotus droibachiensis) using microsatellites. Mar Biol 144:243–251

    Article  Google Scholar 

  • Baisre J, Zamora A (1983) Las pesquerías cubanas de camarón, antecedentes históricos, situación actual y perspectivas. Informe del Ministerio de la Industria Pesquera. Centro de Investigaciones Pesqueras. Cuba

  • Ball AO, Chapman RW (2003) Population genetic analysis of white shrimp, Litopenaeus setiferus, using microsatellite genetic markers. Mol Ecol 12:2319–2330

    Article  PubMed  CAS  Google Scholar 

  • Benzie JAH (2000) Population genetic structure in penaeid prawns. Aquacult Res 31:95–119

    Article  Google Scholar 

  • Borrell Y, Espinosa G, Romo J, Vázquez E, Sánchez JA, Blanco G (2004) DNA microsatellites variability and genetic differentiation among natural populations of the Cuban white shrimp Litopenaeus schmitti. Mar Biol 144(2):327–333

    Article  CAS  Google Scholar 

  • Chakraborty R, Kimmel M (1999) Statistics of microsatellite loci: estimation of mutation rate and pattern of population expansion. In: Goldstein DB, Schlöterer C (eds) Microsatellites evolution and applications. Oxford University Press, London

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Excoffier A, Smouse P, Quattro J (1992) Analysis of Molecular Variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (2001) PHYLIP version 3.6. Molecular Sequence Programs. The University of Washington

  • García-Machado E, Robainas A, Espinosa G, Oliva M, Paez J, Verdecia N, Monnerot M (2001) Allozyme and mitochondrial DNA variation in Cuban populations of the shrimp Farfantepenaeus notialis (Crustacea: Decápoda). Mar Biol 138(4):701–707

    Article  Google Scholar 

  • García S, Le Reste L (1981) Life cycles, dynamics, exploitation and management of coastal penaeid shrimp stocks. FAO Fisheries Technical Paper 203, FAO, Rome

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DB, Schlöterer C (eds) (1999) Microsatellites evolution and applications. Oxford University Press, London

    Google Scholar 

  • González-Yánez AA, Ortíz P (2002) Relación estacional entre el clima y la abundancia relativa del camarón rosado Farfantepenaeus notialis en el Golfo de Ana María, Cuba. Revista de Investigaciones Marinas 23(2):97–104

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html

  • Guitart B, González E, Reyes R (1982) Estudio comparativo de la fecundidad del camarón rosado (Penaeus notialis) en áreas de la plataforma sur de Cuba. Revista Cubana de Investigaciones Pesqueras 7(4):65–92

    Google Scholar 

  • Guitart B, González E, Fraga I, Reyes R (1985) Areas y épocas de desove de los camarones Penaeus notialis y Penaeus schmitti en la plataforma cubana. Revista Cubana de Investigaciones Pesqueras 10 (3–4):1–31

    Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiples alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mesenberg KD (2002) Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Mol Ecol 11:2523–2535

    Article  PubMed  Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed  CAS  Google Scholar 

  • Krug P (2001) Bet-hedging dispersal strategy of a specialist marine herbivore: a settlement dimorphism among sibling larvae of Alderia modesta. Mar Ecol Prog Ser 213:177–192

    Article  Google Scholar 

  • Laikre L, Jorde PE, Ryman N (1998) Temporal change of mitochondrial DNA haplotype frequencies and female effective size in a brown trout (Salmo trutta) population. Evolution 52:910–915

    Article  Google Scholar 

  • Maggioni R, Rogers AD, Maclean N (2003) Population structure of Litopenaeus schmitti (Decapoda: Penaeidae) from the Brazilian coast identified using six polymorphic microsatellite loci. Mol Ecol 12:3213–3217

    Article  PubMed  CAS  Google Scholar 

  • Marshall TC, Slate J, Kruuk L, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655

    Article  PubMed  CAS  Google Scholar 

  • Miller LM, Kapuscinski AR (1997) Historical analysis of genetic variation reveals low effective population size in a Northern Pike (Esox lucius) population. Genetics 147:1249–1258

    PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: A comparison of genetic composition over 60 years. Mol Ecol 6:487–492

    Article  CAS  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1999) Genetic variation in time and space: Microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution 53:261–268

    Article  Google Scholar 

  • Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135

    Article  PubMed  Google Scholar 

  • Páez J, Font L, Sosa M (1997) Las pesquerías de camarón de la plataforma cubana. CARICOM Res Document 22:131–152

    Google Scholar 

  • Páez J, Utset A (1998) A Geostatistical application to the Cuban Shrimp population management at Ana María Gulf. Paper presented at Second CFRAMP/FAO/DANIDA Stock Assessment workshop on the Shrimp and Groundfish Fisheries of the Brazil-Guianas Shelf, Guyana, May 1998

  • Potvin C, Bernatchez L (2001) Lacustrine spatial distribution of landlocked Atlantic salmon populations assessed across generations by multilocus individual assignment and mixed-stock analyses. Mol Ecol 10:2375–2388

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 3.3): A population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Robainas-Barcia A, Espinosa G, Hernádez D, García-Machado E (2005) Temporal variation of the population structure and genetic diversity of Farfantepenaeus notialis assessed by allozyme loci. Mol Ecol 14:2933–2942

    Article  PubMed  Google Scholar 

  • Robainas-Barcia A, Monnerot M, Solignac M, Dennebouy N, Espinosa G, García-Machado E (2002) Polymorphic microsatellite loci from the pink shrimp Farfantepenaeus notialis (Crustacea, Decapoda). Mol Ecol Notes 2:344–345

    Article  Google Scholar 

  • Ruzzante DE, Taggart CT, Doyle RW, Cook D (2001) Stability in the historical pattern of genetic structure of Newfoundland cod (Gadus morhua) despite the catastrophic decline in population size from 1964 to 1994. Conserv Gen 2:257–269

    Article  CAS  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Sosa M, Iglesias M, Castro PO (1999) Contribución al conocimiento de la dinámica poblacional del camarón rosado (Farfantepenaeus notialis) en el Golfo de Ana María. Paper presented at Taller 40 Aniversario del Centro de Investigaciones Pesqueras, Cuba, January 1999

  • Sponaugle S, Cowen RK, Shanks A, Morgan SG, Leis JM, Pineda J, Boehlert GW, Kingsford MJ, Lindeman KC, Grimes C, Munro J (2002) Predicting self-recruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70(1):341–375

    Google Scholar 

  • Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L). Mol Ecol 8:169–179

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–510

    PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugenics 15:323–354

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regards to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Xu Z, Primavera JH, De la Pena L, Petit P, Belak J, Alcivar-Warren A (2001) Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in the Philippines using microsatellites. Aquaculture 199:13–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nicole Dennebouy for the technical assistance, Ileana Álvarez, Mireya Sosa, Serbilio, Gilma Delgado and Luis Fong from Centro de Investigaciones Pesqueras, for facilitating sampling in commercial vessels and for discussion on fisheries. We thank also the personnel from fishery bureau of Santa Cruz del Sur, Júcaro, Cienfuegos, and Batabanó. We thank the editors and two anonymous referees for reading and providing valuable suggestions to our manuscript. This research was supported by grants from the International Foundation for Science, Stockholm, Sweden to EGM and from the University of Havana, Alma Mater to ARB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik García-Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robainas-Barcia, A., Blanco, G., Sánchez, J.A. et al. Spatiotemporal genetic differentiation of Cuban natural populations of the pink shrimp Farfantepenaeus notialis . Genetica 133, 283–294 (2008). https://doi.org/10.1007/s10709-007-9212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9212-z

Keywords

Navigation